International Journal of Applied Mathematics

Volume 26 No. 1 2013, 39-54

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v26i1.4

A NOTE ON SOME PROPERTIES OF DOUBLE TOPOLOGICAL OPERATIONS AND NEARLY OPEN SETS

Sahem Al-Tarawneh

Department of Mathematics Al Hussein Bin Talal University Maan, JORDAN

Abstract: The aim of this paper is to study some topological double operations $\{(A^{\circ})^{\circ}, (A^{\circ})^{E}, (A^{\circ})^{b}, (A^{E})^{\circ}, \cdots\}$ and to obtain the interrelationships between these operations. We also study and investigate new properties of nearly open sets and introduce some conditions to strengthen semi pre-open (pre-closed) sets to be open (closed).

AMS Subject Classification: 54-00, 54A05, 54A10

Key Words: $E(P^{\circ})^s$, $E(P^{E})^s$, $E(P^{b})^s$, double operations, clopen sets

1. Introduction

This paper consists of preliminaries (Section 2) and two basic sections. Section 3 studies the relationships between double operations, and by using these relationships we prove that $E(P^{\circ})^s$, $E(P^E)^s$, and $E(P^b)^s$ form a partition of whole space X (or fewer when one or more of these elements of each set is nonempty) in spite of $E(P)^s$ form a partition of X. The concepts of semiopen (semiclosed), pre-open (pre-closed), and regular open (regular closed) were introduced and studied, respectively in [3],[4],[5], and [6].

In Section 4 we rewrite Definition 2.3 using the properties of double operations, and provide also some theorems and remarks on this subject.

Received: December 17, 2012 © 2013 Academic Publications

2. Preliminaries

Throughout this paper (X, τ) denotes the topological space, \overline{A} is the closure of A, A° is the interior of A, A^{E} is the exterior of A, A^{b} is the boundary of A, and A^{C} is the complement of A.

Definition 1. ([1]) Let X be a nonempty set. By a partition p of X we mean a set of nonempty subsets of X such that:

- 1. If $A, B \in P$ and $A \neq B$, then $A \cap B = \emptyset$.
- 2. $\bigcup_{c \in P} c = X$.

Definition 2. ([2]) The partition topology is a topology that can be induced on any set X by partitioning X into disjoint subsets P, these subsets form the basis for the topology.

Definition 3. A subset U of a topological space (X, τ) is said to be:

- 1. Semiopen set if $U \subseteq \overline{U^{\circ}}$.
- 2. Semiclosed set if $\overline{U}^{\circ} \subseteq U$.
- 3. Preopen set if $U \subseteq \overline{U}^{\circ}$.
- 4. Preclosed set if $\overline{U^{\circ}} \subset U$.
- 5. Regular open set if $U = \overline{U}^{\circ}$
- 6. Regular closed if $U = \overline{U^{\circ}}$.
- 7. α -open set if $U \subseteq (\overline{U^{\circ}})^{\circ}$.
- 8. α -closed set if $\overline{\overline{U}}^{\circ} \subseteq U$.

Theorem 1. ([9]) Let (X, τ) be a topological space and let $A \subseteq X$. Then

- 1. $A^{\circ} = \left(\overline{(A^c)}\right)^c$.
- 2. $\overline{A} = ((A^c)^{\circ})^c$.

Remark 1. Using the same assumptions of the previous theorem it follows:

$$A^{E} = (A^{c})^{\circ} = (\overline{A})^{c}. \tag{1}$$

Theorem 2. ([8]) Let (X,τ) be a topological space and let $A\subseteq X$. Then:

1.
$$A^b = \overline{A} \cap \overline{(A)^c}$$

2.
$$\overline{(A \cup B)} = \overline{A} \cup \overline{B}$$

3.
$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$
.

Proposition 1. Let (X,τ) be a topological space and let $A\subseteq X$. Then:

- 1. A is clopen set if and only if $A^b = \emptyset$
- 2. $A^b = (A^c)^b$
- 3. $(\overline{A})^b \subseteq A^b$
- 4. $(A \cap B)^b \subseteq A^b \cup B^b$.

Proof. 1. If A is clopen, then $A^b = \overline{A} \cap \overline{(A)^c} = A \cap A^c = \emptyset$. Conversely, if $A^b = \overline{A} \cap \overline{(A)^c} = \emptyset$, then $\overline{A} \subseteq \left(\overline{(A)^c}\right)^c = A^\circ$, using Remark 1 it follows $A \subseteq \overline{A} \subseteq A^\circ \subseteq A$, which implies that A is clopen.

2. It is clear, from Theorem 2, Part 1.

3.
$$(\overline{A})^b = \overline{A} \cap \overline{((\overline{A})^c)} \subseteq \overline{A} \cap \overline{(A)^c} = A^b$$
.

$$(A \cap B)^{b} = (\overline{A \cap B}) \cap \overline{(A \cap B)^{c}}$$

$$= (\overline{A \cap B}) \cap (\overline{A^{c}} \cap \overline{B^{c}})$$

$$\leq (\overline{A} \cap \overline{B}) \cap (\overline{A^{c}} \cap \overline{B^{c}})$$

$$= (\overline{A} \cap \overline{B} \cap \overline{A^{c}}) \cup (\overline{A} \cap \overline{B} \cap \overline{B^{c}})$$

$$= (\overline{A^{b}} \cap \overline{B}) \cup (\overline{A} \cap \overline{B^{b}}) \subseteq A^{b} \cup B^{b}$$

Theorem 3. ([8]) Let (X,τ) be a topological space and let $A\subseteq X$. Then:

- 1. A is open if and only if $A^b \cap A = \emptyset$
- 2. A is closed if and only if $A^b \subseteq A$.

3. Double topological operations

Definition 4. Let $P = \{A^{\circ}, A^{E}, A^{b}\}$ be the partition of the space X, and $E(P)^{s}$ denote the elements of P. Define:

$$P^{\circ} = \left\{ (A^{\circ})^{\circ}, (A^{\circ})^{E}, (A^{\circ})^{b} \right\},$$

$$P^{E} = \left\{ (A^{E})^{\circ}, (A^{E})^{E}, (A^{E})^{b} \right\},$$

$$P^{b} = \left\{ (A^{b})^{\circ}, (A^{b})^{E}, (A^{b})^{b} \right\},$$

with elements of P° , P^{E} , and P^{b} , denoted by $E(P^{\circ})^{s}$, $E(P^{E})^{s}$, and $E(P^{b})^{s}$ respectively.

In this section we study the relationships between double operations. Using these relationships we prove that $E(P^{\circ})^s$, $E(P^E)^s$, and $E(P^b)^s$ form a partition of the space X (or fewer, when one or more element of each set is nonempty). Besides, $E(P)^s$ forms a partition of X as follows:

Lemma 1. Let (X, τ) be a topological space and let $A \subseteq X$. Then X can be expressed as disjoint union of elements of P, i.e $X = A^{\circ} \cup A^{E} \cup A^{b}$, that is $E(P)^{s}$ form a partition of X.

Proof. We have $X = A^b \cup (A^b)^c$, but

$$A^{b} = \overline{A} \cap \overline{A^{c}} = \left(\left(\overline{A} \right)^{c} \cup \left(\overline{A^{c}} \right)^{c} \right)^{c} = \left(A^{E} \cup A^{\circ} \right)^{c},$$

by Theorem 1 and Remark 1, the complement of both sides gives $(A^b)^c = A^E \cup A^\circ$. Clearly $X = A^\circ \cup A^E \cup A^b$. To show that these elements are mutually disjoint, we have:

$$A^{\circ} \cap A^{E} = A^{\circ} \cap (A^{c})^{\circ} = (A \cap A^{c})^{\circ} = \emptyset^{\circ} = \emptyset,$$

$$A^{\circ} \cap A^{b} = (\overline{A^{c}})^{c} \cap \overline{A} \cap \overline{(A^{c})} = \overline{A} \cap \left((\overline{A^{c}})^{c} \cap \overline{(A^{c})} \right) = \overline{A} \cap \emptyset = \emptyset,$$

with $A^E \cap A^b = (\overline{A})^c \cap \overline{A} \cap \overline{(A^c)} = \overline{A^c} \cap ((\overline{A})^c \cap \overline{A}) = \overline{A^c} \cap \emptyset = \emptyset$. Hence $E(P)^s$ form a partition of X.

Lemma 2.
$$((A^{\circ})^c)^{\circ} = (\overline{(A^{\circ})})^c = (\overline{(A)^c})^{\circ}$$
.

Proof. Since
$$(A^{\circ})^c = \overline{(A^c)}$$
, then $((A^{\circ})^c)^{\circ} = \left(\overline{(A)^c}\right)^{\circ}$, and as
$$\overline{A} = ((A^c)^{\circ})^c$$
, then $\overline{A^{\circ}} = \left(((A^{\circ})^c)^{\circ}\right)^c$, it follows $\left(\overline{(A)^{\circ}}\right)^c = ((A^{\circ})^c)^{\circ}$.

Theorem 4. Let (X,τ) be a topological space and let $A\subseteq X$. Then:

	A [◦]	A^{E}	A^b
A°	$(A^{\circ})^{\circ} = A^{\circ}$	$(A^{\circ})^E = (\overline{(A)^c})^{\circ} \subseteq (A^{\circ})^c$	$(A^{\circ})^b = \overline{(A)^{\circ}} \cap \overline{(A)^c} \subseteq A^b$
A^E	$(A^E)^\circ = A^E$	$(A^E)^E = (\overline{A})^\circ$	$\left(A^{E}\right)^{b} = \left(\overline{A}\right)^{b} \subseteq A^{b}$
A^b	$ (A^b)^\circ = (\overline{A})^\circ \cap ((A^\circ)^c)^\circ $ $= (\overline{A})^\circ \cap (\overline{(A^\circ)})^c $ $= (\overline{A})^\circ \cap (\overline{(A)^c})^\circ \subseteq A^b $	$(A^b)^E = (A^\circ \cup A^E)^\circ$ $= (A^b)^c = A^\circ \cup A^E$	$\left(A^b\right)^b = \overline{\left(A^\circ \cup A^E\right)} \cap A^b \subseteq A^b$

Proof. 1. $(A^{\circ})^{\circ} = A^{\circ}$, since A° is an open set.

2.
$$(A^E)^{\circ} = ((A^c)^{\circ})^{\circ} = (A^c)^{\circ} = A^E$$
.

3.
$$(A^{\circ})^E = ((A^{\circ})^c)^{\circ} = (\overline{(A)^c})^{\circ}$$

$$\subset \overline{(A)^c} = (A^\circ)^c$$
.

4.
$$(A^E)^E = ((A^E)^c)^\circ = (((\overline{A})^c)^c)^\circ = (\overline{A})^\circ$$
.

5.

$$(A^{b})^{\circ} = (\overline{A} \cap \overline{(A)^{c}})^{\circ}$$

$$= (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \subseteq \overline{A} \cap (\overline{A^{c}}) = A^{b}$$

$$= (\overline{A})^{\circ} \cap ((A^{\circ})^{c})^{\circ}, \text{ by Lemma 3,}$$

$$= (\overline{A})^{\circ} \cap (\overline{A^{\circ}})^{c}, \text{ by Lemma 3.}$$

6.
$$(A^{\circ})^{b} = \overline{A^{\circ}} \cap \overline{(A^{\circ})^{c}} = \overline{A^{\circ}} \cap (A^{\circ})^{c}$$
, but $\overline{A^{\circ}} \subseteq \overline{A}$, $(A^{\circ})^{c} = \overline{A^{c}}$, then $(A^{\circ})^{b} \subseteq \overline{A} \cap \overline{(A)^{c}} = A^{b}$.

7.
$$(A^E)^b = ((\overline{A})^c)^b = (\overline{A})^b \subseteq A^b$$
.

8.

But we have:

$$\left(A^\circ \cup A^E\right)^\circ \subseteq A^\circ \cup A^E \text{, then } \left(A^b\right)^E = \left(A^E \cup A^\circ\right)^\circ = A^E \cup A^\circ = \left(A^b\right)^c.$$

9.
$$(A^b)^b = (\overline{A} \cap \overline{A^c})^b \subseteq (\overline{A})^b \cup (\overline{A^c})^b \subseteq A^b \cup (A^c)^b = A^b \cup A^b = A^b$$
. Hence $(A^b)^b \subseteq A^b$, and clearly $(A^b)^b = \overline{A^b} \cap \overline{(A^b)^c} = A^b \cap \overline{(A^E \cup A^\circ)}$.

Remark 2. We have $(A^E)^{\circ} \subseteq (A^{\circ})^E$ but the converse is not true.

Since $A^{\circ} \subseteq A$ it follows that $(A^{E})^{\circ} \subseteq (A^{\circ})^{E}$. Or by

$$A^E = \left(\overline{A}\right)^c \subseteq A^c \subseteq (A^\circ)^c$$
, then $\left(A^E\right)^\circ = A^E \subseteq \left((A^\circ)^c\right)^\circ = (A^\circ)^E$.

The following example shows that the converse is not true.

Example 1. Consider $A = [1,2] \subseteq X = \mathbb{R}$ with co-countable topology, then $A^{\circ} = A^{E} = \emptyset$, but $(A^{\circ})^{E} = (\emptyset)^{E} = X$

$$\Rightarrow (A^{\circ})^{E} \neq A^{\circ}, (A^{\circ})^{E} \neq A^{\circ}$$
 and $(A^{\circ})^{E} \not\subset (A^{E})^{\circ}$.

Remark 3. $(A^{\circ})^{E}$ needs not to be the same as A^{E} or A° , in spite if A^{E} is an open set.

Remark 4.

$$A^{\circ} \subseteq \left(A^{E}\right)^{E} \subseteq \overline{A}.\tag{2}$$

Since

$$\left(\overline{A}\right)^{\circ} = \left(A^{E}\right)^{E} \subseteq \overline{A} \tag{3}$$

and

$$A^E \subseteq A^c$$
, then $(A^c)^E = A^\circ \subseteq (A^E)^E$. (4)

Now by combining (3) and (4), we get

Remark 5.
$$(A^b)^\circ = (A^E)^E \cap (A^\circ)^E$$
.

This follows obviously from part (3) and part (4). Also we have

$$\left(A^{b}\right)^{\circ} = \left(A^{E}\right)^{E} \cap \left(A^{\circ}\right)^{E} = \left(A^{E} \cup A^{\circ}\right)^{E} = \left(\left(A^{b}\right)^{c}\right)^{E}.$$

Corollary 1. From Theorem 1 we have the following results:

1.

$$\left(A^{b}\right)^{\circ} = \left(A^{E}\right)^{E} \cap \left(A^{\circ}\right)^{E}. \tag{5}$$

Remark 4 implies that $(A^b)^{\circ} \subseteq (A^E)^E$, $(A^b)^{\circ} \subseteq (A^{\circ})^E$.

- 2. $(A^E)^{\circ} \subseteq (A^b)^E$ is obvious from Theorem 1, parts 2 and 8.
- 3. Since $(A^b)^{\circ} = (\overline{A})^{\circ} \cap ((A^{\circ})^c)^{\circ}$ and $(A^{\circ})^b = \overline{A^{\circ}} \cap (A^{\circ})^c$ which implies that $(A^b)^{\circ} \subseteq (\overline{A})^{\circ} = (A^E)^E$ and $(A^{\circ})^b \subseteq \overline{A^{\circ}}$.

Note 1.
$$\overline{A^{\circ}} = \left(((A^{\circ})^c)^{\circ} \right)^c$$
 and $(\overline{A})^{\circ} = \left(\overline{\left((\overline{A})^c \right)} \right)^c$.
Note 2. It is easy to show that $(A^{\circ})^b \subseteq \overline{A^{\circ}} = \left(((A^{\circ})^c)^{\circ} \right)^c = \left((A^{\circ})^E \right)^c$.

- **Theorem 5.** 1. Let (X, τ) be a topological space and let $A \subseteq X$. Then X can be expressed as disjoint union of elements of P° (or simply $X = (A^{\circ})^{\circ} \cup (A^{\circ})^{E} \cup (A^{\circ})^{b}$), that is $E(P^{\circ})^{s}$ form a partition of X.
- 2. X can be expressed as disjoint union of elements of P^E , or simply $X = (A^E)^{\circ} \cup (A^E)^E \cup (A^E)^b$, or $E(P^E)^s$ form a partition of X.
- 3. X can be expressed as disjoint union of elements of P^b , or simply $X = (A^b)^{\circ} \cup (A^b)^E \cup (A^b)^b$, or $E(P^b)^s$ form a partition of X.

Proof. Using Lemma 1, we prove the above theorem in an alternative method, that is, by using the properties of double operations as follows:

1. To prove that $E(P^{\circ})^s$ form a partition of the space X (or fewer when one element or more is nonempty). We have

$$X = (A^{\circ})^{b} \cup \left((A^{\circ})^{b} \right)^{c} = (A^{\circ})^{b} \cup \left(\overline{A^{\circ}} \cap \overline{A^{c}} \right)^{c}$$
$$= (A^{\circ})^{b} \cup \left(\left(\overline{A^{\circ}} \right)^{c} \cup \left(\overline{A^{c}} \right)^{c} \right) = (A^{\circ})^{b} \cup \left((A^{\circ})^{E} \cup A^{\circ} \right)$$
$$= (A^{\circ})^{b} \cup (A^{\circ})^{E} \cup (A^{\circ})^{\circ}$$

where $E(P^{\circ})^s$ are mutually disjoint for:

$$(A^{\circ})^{\circ} \cap (A^{\circ})^{E} = A^{\circ} \cap (\overline{A^{c}})^{\circ} \subseteq A^{\circ} \cap (\overline{A^{c}}) = A^{\circ} \cap (A^{\circ})^{c} = \emptyset.$$

And since $A^{\circ} \subseteq \overline{A^{\circ}}$, $\overline{A^{c}} = (A^{\circ})^{c}$, then

$$(A^{\circ})^{\circ} \cap (A^{\circ})^{b} = A^{\circ} \cap (\overline{A^{\circ}}) \cap (\overline{A^{\circ}}) \subseteq A^{\circ} \cap (A^{\circ})^{c} = \emptyset,$$

$$(A^{\circ})^{E} \cap (A^{\circ})^{b} = \left(\overline{A^{c}}\right)^{\circ} \cap \left(\overline{A^{\circ}}\right) \cap \left(\overline{A^{c}}\right) \subseteq \left(\overline{A^{c}}\right)^{\circ} \cap \left(\left(\overline{A^{c}}\right)^{\circ}\right)^{c} = \emptyset.$$

Or using Corollary 1, part (4), it shows that $E(P^{\circ})^s$ form a partition of X.

2. To prove that $E(P^E)^s$ form a partition of X:

$$X = (A^{E})^{b} \cup ((A^{E})^{b})^{c} = (A^{E})^{b} \cup (\overline{A} \cap \overline{(A)^{c}})^{c}$$

$$= (A^{E})^{b} \cup ((\overline{A}))^{c} \cup ((\overline{(A)^{c}})^{c}) = (A^{E})^{b} \cup (A^{E} \cup (\overline{A})^{\circ})$$

$$= (A^{E})^{b} \cup (A^{E})^{\circ} \cup (A^{E})^{E}.$$

Also we have the following:

$$(A^{E})^{\circ} \cap (A^{E})^{E} = (\overline{A})^{c} \cap (\overline{A})^{\circ} \subseteq \overline{(\overline{A})^{c}} \cap (\overline{(\overline{A})^{c}})^{c} = \emptyset,$$

$$(A^{E})^{\circ} \cap (A^{E})^{b} = (\overline{A})^{c} \cap \overline{(\overline{A})^{c}} \cap \overline{A} \subseteq (\overline{A})^{c} \cap \overline{A} = \emptyset,$$

$$(A^{E})^{E} \cap (A^{E})^{b} = (\overline{A})^{\circ} \cap \overline{(\overline{A})^{c}} \cap \overline{A} = (\overline{((\overline{A})^{c})})^{c} \cap \overline{(\overline{A})^{c}} \cap \overline{A} = \emptyset \cap \overline{A} = \emptyset.$$

Hence $E(P^E)^s$ form a partition of X.

3. We have the following:

$$X = (A^b)^b \cup ((A^b)^b)^c = (A^b)^b \cup (A^b \cap \overline{(A^E \cup A^\circ)})^c$$

$$= (A^b)^b \cup ((A^b)^c \cup (A^E \cup A^\circ)^E)$$

$$= (A^b)^b \cup ((A^b)^c \cup ((A^E)^E \cap (A^\circ)^E))$$

$$= (A^b)^b \cup (A^b)^E \cup (A^b)^\circ.$$

Now to show that $E(P^b)^s$ are mutually disjoint, we have:

$$(A^b)^{\circ} \cap (A^b)^E \subseteq A^b \cap (A^b)^c = \emptyset$$

$$(A^{b})^{\circ} \cap (A^{b})^{b} = (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap (A^{b} \cap \overline{(A^{E} \cup A^{\circ})})$$

$$= (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap (A^{b} \cap (\overline{A^{E} \cup A^{\circ}}))$$

$$= (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap (A^{b} \cap (\overline{(A^{c})^{c} \cup (\overline{A})^{c}}))$$

$$\subseteq (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap (((\overline{(A^{c})^{\circ})^{c} \cup (\overline{A})^{c}}))$$

$$= (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap ((((\overline{A^{c})^{\circ}})^{c} \cup (\overline{A})^{\circ})^{c}))$$

$$\subseteq ((\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap ((\overline{A^{c}})^{\circ})^{c})$$

$$\cup ((\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} \cap ((\overline{A^{c}})^{\circ})^{c})$$

$$\subseteq ((\overline{A})^{\circ} \cap \emptyset) \cup ((\overline{A^{c}})^{\circ} \cap \emptyset) = \emptyset.$$

$$(A^{b})^{E} \cap (A^{b})^{b} = (A^{b})^{c} \cap (A^{b} \cap (\overline{A^{b}})^{c}) = \emptyset \cap (\overline{A^{b}})^{c} = \emptyset.$$

Hence $E(P^b)^s$ form a partition of X.

4. Semiopen, preopen, and α -open sets

In this section we redefine Definition 3 by means of the properties of double operations, also we provide some theorems and remarks on this subject.

Definition 5. A subset U of a topological space (X, τ) is said to be:

- 1. Semiopen set if $U \subseteq (U^{\circ E})^c$.
- 2. Semiclosed if $U^{EE} \subseteq U$.
- 3. Preopen set if $U \subseteq U^{EE}$
- 4. Preclosed if $(U^{\circ E})^c \subseteq U$.
- 5. Regular open if $U = U^{EE}$.
- 6. Regular closed if $U = (U^{\circ E})^c$.
- 7. α -open set if $U \subseteq (U^{\circ})^{EE}$.
- 8. α -closed set if $\overline{U^{EE}} \subseteq U$.

Remark 6. 1. If A is semiclosed set, then $(A^b)^{\circ} \subseteq A$.

2. If A a preclosed set, then $(A^{\circ})^b \subseteq A$.

Proof. It is obvious by Corollary 1.

Theorem 6. Let (X,τ) be a topological space, and let $A\subseteq X$. If A is closed set subset of X, then:

- 1. $A^{EE} = A^{\circ}$.
- 2. $(A^E)^b = A^b$, therefore $(A^E)^b \subseteq A$.
- 3. $(A^E)^{\circ} = A^c$
- 4. $(A^b)^E = A^{EE} \cup (A^E)^{\circ}$.

Proof. 1. $A^{EE} = (\overline{A})^{\circ}$, but A is closed set, then $\overline{A} = A$. Thus $A^{EE} = A^{\circ}$.

- 2. $(A^E)^b = \overline{A}^b = A^b$, since A closed implies that $A^b \subseteq A$, thus $(A^E)^b = A^b \subseteq A$.
- 3. $(A^E)^\circ = A^E = (\overline{A})^c = A^c$.

4.
$$(A^b)^E = A^\circ \cup A^E = A^\circ \cup (\overline{A})^c = A^\circ \cup A^c = A^{EE} \cup (A^E)^\circ$$
.

Theorem 7. Let $A \subseteq X$ be any open subset of the space X, then A contains none of its boundary interior points.

Proof. et A be an open subset of X, we want to prove that $(A^{\circ})^b \cap A = \emptyset$. Since $(A^{\circ})^b \cap A = \overline{A^{\circ}} \cap \overline{A^{c}} \cap A = \overline{A} \cap \overline{A^{c}} \cap A$, so $(A^{\circ})^b \cap A = A^b \cap A = \emptyset$. \square

Remark 7. The converse of above theorem is not true, as shown in the next example.

Example 2. Consider $X = \{1, 2, 3, 4\}$, with

$$\tau = \{\emptyset, X, \{1, 2\}, \{3\}, \{1, 2, 3\}\}.$$

Take $A = \{1, 4\}$, then $A^{\circ} = \emptyset$, and $(A^{\circ})^b = (\emptyset)^b = \emptyset \subseteq A$, but A is not open set.

Theorem 8. Let A be a semiopen set and $(A^{\circ})^b \cap A = \emptyset$, then A is open set.

Proof. If $A = \emptyset$, then A is open set, suppose that $A \neq \emptyset$ which implies that there exists $x \in A \Rightarrow x \notin (A^{\circ})^b = \overline{(A^{\circ})} \cap \overline{A^c}$, thus either $x \notin \overline{(A^{\circ})}$ or $x \notin \overline{(A^c)}$. If $x \notin \overline{(A^{\circ})} \Rightarrow x \notin A$.

Thus
$$x \notin \overline{(A^c)}$$
, then $x \in \left(\overline{(A^c)}\right)^c = A^\circ$. Hence A is open set.

Corollary 2. A is open set if and only if A is semiopen set and $(A^{\circ})^b \cap A = \emptyset$.

Proof. It follows by Theorem 2 and Theorem 3. It is clear that every open set is semiopen set. \Box

Theorem 9. Let A be an open set, then $(A^{\circ})^E = A^E$.

Proof.
$$(A^{\circ})^{E} = (\overline{A^{c}})^{\circ} = (\overline{A^{\circ}})^{c} = (\overline{A})^{c} = A^{E}$$
.

Remark 8. The converse of the previous theorem is not true.

Example 3. Let A={3,4}, then
$$A^E = \left(\overline{\{3,4\}}\right)^c = (\{3,4\})^c = \{1,2\}.$$
 And $(A^\circ)^E = \left(\overline{\{1,2\}}\right)^\circ = \{1,2,4\}^\circ = \{1,2\}$, thus $(A^\circ)^E = A^E$, but A is not open set.

Theorem 10. If $(A^{\circ})^E = A^E$, then

- 1. A is semiopen set.
- 2. $(A^{\circ})^b = A^b$.
- *Proof.* 1. Since $(A^{\circ})^E = A^E$, then $(\overline{A^c})^{\circ} = (\overline{A^{\circ}})^c = (\overline{A})^c$. Thus $(\overline{A^{\circ}}) = \overline{A}$, but always $A \subseteq \overline{A}$, then $A \subseteq (\overline{A^{\circ}}) = \overline{A}$. Hence A is semiopen set by Definition 3, (1).
- 2. $(A^{\circ})^b = \overline{A^{\circ}} \cap \overline{A^c} = \overline{A} \cap \overline{A^c} = A^b$.

Theorem 11. If A is closed then:

1.
$$(A^b)^{\circ} \subseteq A$$
.

$$2. (A^{\circ})^b \subseteq A.$$

3.
$$(A^E)^b \subseteq A$$
.

4.
$$(A^b)^b \subseteq A$$
.

Proof. Let A be closed, and since $(A^b)^{\circ} \subseteq A^b$, then $(A^b)^{\circ} \subseteq A$. The same follows for the other parts 2., 3., and 4.

Remark 9. The converse of part 2., Theorem 11 is not true.

Example 4. Take $A = \{1,4\} \subseteq X = \{1,2,3,4\}$ with topology $\tau = \{\emptyset, X, \{1,2\}, \{3\}, \{1,2,3\}\}$, then $(A^{\circ})^b = (\{1,4\}^{\circ})^b = (\emptyset)^b = \emptyset \subseteq A$, but A is not closed in X.

Theorem 12. If $(A^b)^E = \emptyset$, then:

1.
$$A^{\circ} = A^E = \emptyset$$
.

2.
$$A^b = (A^\circ)^E = (A^b)^\circ = X$$
.

3.
$$(A^E)^{\circ} = (A^{\circ})^b = (A^b)^b = \emptyset$$
.

Proof. 1. If $(A^b)^E = \emptyset$, then $(A^b)^c = \emptyset$, hence $A^b = X$. Therefore $A^\circ = A^E = \emptyset$.

2.
$$(A^{\circ})^{E} = (\overline{A^{\circ}})^{c} = (\overline{\emptyset})^{c} = X$$
.
With $(A^{b})^{\circ} = (\overline{A})^{\circ} \cap (\overline{A^{c}})^{\circ} = (X)^{\circ} = X$.

3.
$$(A^{\circ})^b = (\emptyset)^b = \emptyset$$
, and $(A^b)^b = (X)^b = \emptyset$.

Theorem 13. If A is clopen subset of X, then:

1.
$$(A^b)^b = (A^b)^\circ = (A^E)^b = \emptyset$$
, and $(A^b)^E = X$.

- 2. $(A^{\circ})^E = (A^E)^{\circ} = A^c$, $(A^E)^E = A$, and therefore the set $\{A^{EE}, A^{E\circ}\}$ forms a partition of X.
- 3. A is regular clopen.
- 4. $(A^b)^E$ is dense in X.
- *Proof.* 1. Since A is clopen which implies that $A^b = \emptyset$, but $(A^b)^b$, $(A^b)^\circ$ and $(A^E)^b \subseteq A^b = \emptyset$, the claim follows.

Also,
$$(A^b)^E = (\emptyset)^c = X$$
.

- 2. Since A is clopen we have $(A^E)^\circ = A^E = (\overline{A})^c = A^c$ and hence its clopen, and $(A^\circ)^E = (\overline{A^c})^\circ = (A^c)^\circ = A^c$. Also we have $(A^E)^E = (\overline{A})^\circ = A^\circ = A$. Clearly $\{A^{EE}, A^{E\circ}\}$ forms a partition of X.
- 3. Since A is clopen, we have $(\overline{A})^{\circ} = A^{\circ} = A$, then A is regular open and $(\overline{A^{\circ}}) = \overline{A} = A$, so A is regular closed. Hence A is regular clopen.
- 4. $\overline{(A^b)^E} = \overline{(A^b)^c} = \overline{X} = X$. Thus $(A^b)^E$ is a dense in X.

Theorem 14. If $(A^b)^b = \emptyset$, then $(A^b)^\circ = A^b$ and hence A^b is clopen.

Proof. Since

$$(A^b)^b = A^b \cap \overline{(A^b)^c} = \emptyset$$
, then $A^b \subseteq (\overline{(A^b)^c})^c = (A^b)^\circ$, (6)

but $(A^b)^{\circ} \subseteq A^b$, so $(A^b)^{\circ} = A^b$. Also from (6) A^b is an open set, but A^b is also closed, thus A^b is clopen.

Remark 10. If $A^{bb} = \emptyset$ and $(A^b)^{\circ} \subseteq A$, then A is closed.

Proof. By the above theorem, $(A^b)^b = \emptyset$, then $(A^b)^\circ = A^b \subseteq A$ which implies that A is closed.

Lemma 3. If $(A^E)^b = \emptyset$. Then:

1.
$$(A^E)^E = (A^E)^c$$
.

- 2. \overline{A} is clopen, and hence A^E is clopen.
- 3. If A is a semiopen set, then A is an α -open set.
- 4. A is a preopen set.
- 5. A^b is clopen.

Proof. 1.
$$(A^E)^b = \emptyset$$
, so $(\overline{A})^b = \overline{A} \cap \overline{(\overline{A})^c} = \emptyset$, which implies that $\overline{A} \subseteq \overline{(\overline{A})^c}^c = \overline{A}^c$, but $\overline{(A)}^c \subseteq \overline{A}$. Thus $\overline{(A)}^c = \overline{(A^E)^E} = \overline{A} = \overline{(A^E)^c}$.

- 2. We have $(\overline{A})^{\circ} = \overline{A}$, then \overline{A} is open, but it is also closed, hence \overline{A} is clopen. Where $A^{E} = (\overline{A})^{c}$; consequently, A^{E} is a clopen set.
- 3. Now, As $(\overline{A})^{\circ} = \overline{A}$, then $(\overline{A^{\circ}})^{\circ} = \overline{A^{\circ}}$, since A is semiopen $A \subseteq \overline{A^{\circ}} = (\overline{A^{\circ}})^{\circ}$. Thus A is an α -open set.
- 4. Since $A \subseteq \overline{A} \subseteq \left(\overline{(A)}^c\right)^c = (\overline{A})^\circ$, this implies that A is a preopen set.
- 5. $(A^b)^{\circ} = (\overline{A})^{\circ} \cap (\overline{A^c})^{\circ} = \overline{A} \cap \overline{A^c} = A^b$, then A^b is open and it is also closed, hence it is clopen.

Theorem 15. If A is semiclosed subset of X, and $(A^E)^E = (A^E)^c$, then A is closed.

Proof. Since
$$(A^E)^E = (A^E)^c$$
, therefore $(\overline{A})^\circ = \overline{A} \subseteq A$. Thus A is closed.

Theorem 16. If $(A^{\circ})^b = \emptyset$, then

- 1. A is preclosed subset of X.
- 2. A° is clopen, and hence X has a partition topology.

Proof. 1. $(A^{\circ})^b = \overline{A^{\circ}} \cap \overline{A^c} = \emptyset$, then $\overline{A^{\circ}} \subseteq (\overline{A^c})^c = A^{\circ} \subseteq A$. Hence A is preclosed.

2. By part 1., we have $\overline{A^{\circ}} \subseteq A^{\circ}$, but it is always true that $A^{\circ} \subseteq \overline{A^{\circ}}$ gives $A^{\circ} = \overline{A^{\circ}}$ which implies that A° is closed, but it is also open. Hence it is clopen and X has a partition topology.

Lemma 4. If $(A^b)^{\circ} = \emptyset$. Then:

- 1. Every preopen is a semiopen subset.
- 2. If A is preopen subset then A is an α open set.

Proof. 1.
$$(A^b)^\circ = (\overline{A})^\circ \cap ((A^\circ)^c)^\circ = \emptyset$$
, therefore $(\overline{A})^\circ \subseteq (((A^\circ)^c)^\circ)^c = \overline{A^\circ}$.

Since A is preopen, we have $A \subseteq (\overline{A})^{\circ} \subseteq \overline{A^{\circ}}$, then A is a semiopen subset.

2. By part 1., $(\overline{A})^{\circ} \subseteq (\overline{A^{\circ}})$, so $(\overline{A})^{\circ} \subseteq (\overline{A^{\circ}})^{\circ}$ but A is preopen subset, then $A \subseteq (\overline{A})^{\circ} \subseteq (\overline{A^{\circ}})^{\circ}$, thus A is an α -open subset of X.

Theorem 17. If $(A^E)^E = (A^E)^c$, and $(A^b)^\circ = \emptyset$, then:

- 1. A is semiopen.
- 2. Every preclosed is closed.
- Proof. 1. By Lemma 2 we have $(A^b)^{\circ} = \emptyset$, then $(\overline{A})^{\circ} \subseteq \overline{(A^{\circ})}$, and $(A^E)^E = (A^E)^c$, hence $(\overline{A})^{\circ} = \overline{A}$ which implies that $\overline{A} \subseteq \overline{A^{\circ}}$, but $A \subseteq \overline{A}$, which gives $A \subseteq \overline{A^{\circ}}$. Hence A is a semiopen subset of X.
- 2. If A is preclosed, then $\overline{A^{\circ}} \subseteq A$, therefore $\Rightarrow \overline{A} \subseteq \overline{A^{\circ}} \subseteq A$. Hence A is closed.

References

- [1] Shwu-Yeng T. Lin, You-Feng Lin, Set Theory: An Intutitive Approach, Houghton Mifflin Company, Boston (1974).
- [2] Vijeta Iyer, Kiram Shrivastara, Characterizations of a partition topology on a set, In: *Nehra Nagar Bhopal, India*, To Appear.

[3] N. Levine, Semiopen sets and semicontinuity in topological spaces, *Amer. Math. Monthly*, **70** (1963), 34-41.

- [4] N. Biswas, On characterization of semicontinuous functions, Atti. Accad. Naz. Lince. Ren. Sci. Fis. Mat. Natur., 48 (1970), 399-402.
- [5] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53 (1982), 47-53.
- [6] S.N. El-Deeb, I.A. Hasanein, A.S. Mashhour, T. Noiri, On P-regular spaces, Bull. Math. de Soc. Sci. Math. (R.S.R), 27 (75), No 4 (1983), 311-315.
- [7] S. Willard, General Topology, Addison-Wesley Publ. Co. (1970).
- [8] P.E Long, An Introduction to General Topology, Charley E. Merrill Publ. Co. (1986).
- [9] J. Dugandji, *Topology*, Reprint, New Delhi, 1997.
- [10] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.*, **15** (1965), 961-970.
- [11] A.S. Mashhour, M. El-Monsef, S.N. El-Deeb, On α -open mappings, Acta Math. Hungar., 41 (1983), 213-218.