International Journal of Applied Mathematics

Volume 26 No. 4 2013, 511-514

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) $\mathbf{doi:}$ http://dx.doi.org/10.12732/ijam.v26i4.9

ON ASYMPTOTIC ESTIMATIONS OF THE q-POCHHAMMER SYMBOLS AT q=1

István Mező

Departamento de Matemática Escuela Politécnica Nacional Ladrón de Guevara E11-253, Quito, ECUADOR

Abstract: Watson provided an asymptotic estimation of the Euler function $(q;q)_{\infty}$ when $q \to 1-$. In this short note we reprove and extend his results using Gosper's q-trigonometric functions.

AMS Subject Classification: 11F03, 33F05

Key Words: *q*-Pochhammer symbol, Gosper's *q*-trigonometric functions, Euler modular function

1. The Estimations of Watson

The Euler function ϕ is defined as the infinite product

$$\phi(q) = (1 - q)(1 - q^2)(1 - q^3) \cdots (|q| < 1).$$

More generally, the q-Pochhammer symbol $(a;q)_{\infty}$ is an infinite product

$$(a;q)_{\infty} = (1-a)(1-aq)(1-aq^2)\cdots (|q|<1).$$

Hence $\phi(q) = (q; q)_{\infty}$. It is obvious that $\phi(1-) = 0$, but the speed of the convergence is harder to see. G. N. Watson proved the next estimation [3]:

$$\phi(q) = (q; q)_{\infty} = \frac{\sqrt{2\pi}}{\sqrt{1 - q}} \exp\left(\frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$

Received: September 16, 2013

© 2013 Academic Publications

512 I. Mező

Using the straightforward relation $(q; q^2)_{\infty} = \frac{(q;q)_{\infty}}{(q^2;q^2)_{\infty}}$, we immediately have an estimation for $(q;q^2)_{\infty}$ as well:

$$(q;q^2)_{\infty} = \sqrt{2} \exp\left(\frac{1}{2} \frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$
 (1)

We reprove the Watson estimation using the so-called q-Raabe formula, and then we extend these results.

2. A Shorthand Proof of Watson's Estimation

We use a formula recently published by the present author in [5]:

$$\int_0^1 \log \Gamma_q(x) dx = \frac{\zeta(2)}{\log q} + \log \sqrt{\frac{q-1}{\sqrt[6]{q}}} + \log(q^{-1}; q^{-1})_{\infty}.$$

Here Γ_q is the Jackson q-Gamma function [2]. This relation stands for q > 1, but on the right the q-Pochhammer symbol has parameter q < 1. As $q \to 1+$, the left hand side tends to $\log(\sqrt{2\pi})$, thanks to the integral formula

$$\int_{0}^{1} \log \Gamma(x) dx = \log \sqrt{2\pi}$$

of Raabe [1]. So the left hand side of the penultimate formula is asymptotically $\log(\sqrt{2\pi})(1+o(1))$. Then a simple rearrangement and variable change $q \to 1/q$ gives the result of Watson. (However, we note that Watson described this estimation in a different but equivalent form.)

3. New q-Pochhammer Symbol Estimations

We shall prove the next estimations as $q \to 1-$:

$$(q;q^{2^n})_{\infty}(q^{2^{n-1}};q^{2^n})_{\infty} = 2\sin\left(\frac{\pi}{2^n}\right)\exp\left(\frac{1}{2^{n-1}}\frac{\zeta(2)}{\log q}\right)(1+o(1)) \ (n>0), \quad (2)$$

$$(q^{2^{n-1}-1}; q^{2^n})_{\infty}(q^{2^{n-1}+1}; q^{2^n})_{\infty} = 2\cos\left(\frac{\pi}{2^n}\right)\exp\left(\frac{1}{2^{n-1}}\frac{\zeta(2)}{\log q}\right)(1+o(1))$$

$$(n>1). (3)$$

The next special cases are easy to calculate

$$(q; q^4)_{\infty}(q^3; q^4)_{\infty} = \sqrt{2} \exp\left(\frac{1}{2} \frac{\zeta(2)}{\log q}\right) (1 + o(1)),$$

$$(q; q^8)_{\infty}(q^7; q^8)_{\infty} = \sqrt{2 - \sqrt{2}} \exp\left(\frac{1}{4} \frac{\zeta(2)}{\log q}\right) (1 + o(1)),$$

$$(q^3; q^8)_{\infty}(q^5; q^8)_{\infty} = \sqrt{2 + \sqrt{2}} \exp\left(\frac{1}{4} \frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$
(4)

To prove these estimations, we recall the definition of the Gosper q-trigonometric functions [4, 6]:

$$\sin_q(\pi z) = q^{(z-1/2)^2} \frac{(q^{2z}; q^2)_{\infty} (q^{2-2z}; q^2)_{\infty}}{(q; q^2)_{\infty}^2} \quad (0 < q < 1), \tag{5}$$

$$\cos_q(\pi z) = q^{z^2} \frac{(q^{1-2z}; q^2)_{\infty} (q^{2z+1}; q^2)_{\infty}}{(q; q^2)_{\infty}^2} \quad (0 < q < 1).$$
 (6)

These functions tend to the classical ones as $q \to 1-$.

Now we prove (2). Substituting $z = \frac{1}{2^n}$ into (5) and getting closer to 1 with q, we approximately have that

$$(1+o(1))\sin\left(\frac{\pi}{2^n}\right) = \frac{(q^{1/2^{n-1}}; q^2)_{\infty}(q^{2-1/2^{n-1}}; q^2)_{\infty}}{(q; q^2)_{\infty}^2}$$

Taking the substitution $q \to q^{2^{n-1}}$:

$$(1+o(1))\sin\left(\frac{\pi}{2^n}\right) = \frac{(q;q^{2^n})_{\infty}(q^{2^{n-1}};q^{2^n})_{\infty}}{(q^{2^{n-1}};q^{2^n})_{\infty}^2}.$$

Finally, we can estimate the denominator by (1) to finalize the proof of (2). The proof of (3) is the same, but we need to use the q-cosine function (6).

We note that by using the substitution $z = \frac{1}{3}$ in (5) and (6) respectively, we can easily deduce the next estimations, too:

$$(q; q^6)_{\infty}(q^5; q^6)_{\infty} = \exp\left(\frac{1}{3}\frac{\zeta(2)}{\log q}\right) (1 + o(1)),$$
$$(q^2; q^6)_{\infty}(q^4; q^6)_{\infty} = \sqrt{3}\exp\left(\frac{1}{3}\frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$

There is one more thing what we can do. Estimation (4) can be separated by using the definition of the q-gamma function:

$$\Gamma_q(z) := \frac{(q;q)_{\infty}}{(q^z;q)_{\infty}} (1-q)^{1-z} \quad (0 < q < 1).$$

514 I. Mező

Then using q^4 in place of q and substituting z = 1/4 and z = 3/4, we easily get the next estimations:

$$(q; q^4)_{\infty} = \frac{\sqrt{2\pi}}{\Gamma(\frac{1}{4})} (1 - q^4)^{1/4} \exp\left(\frac{1}{4} \frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$
$$(q^3; q^4)_{\infty} = \frac{\sqrt{2\pi}}{\Gamma(\frac{3}{4})} (1 - q^4)^{-1/4} \exp\left(\frac{1}{4} \frac{\zeta(2)}{\log q}\right) (1 + o(1)).$$

References

- T. Amdeberhan, M.W. Coffey, O. Espinosa, C. Koutschan, D.V. Manna, V.H. Moll, Integrals of powers of loggamma, *Proc. Amer. Math. Soc.*, 139, No. 2 (2010), 535-545.
- [2] G.E. Andrews, R. Askey, R. Roy, *Special Functions*, Cambridge Univ. Press (2000).
- [3] B. Gordon, R.J. McIntosh, Some eighth order Mock Theta functions, *J. London Math. Soc.*, **62** (2000), 321-335.
- [4] R.W. Gosper, Experiments and discoveries in q-trigonometry, In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Ed-s: F.G. Garvan and M.E.H. Ismail), Kluwer, Dordrecht, Netherlands (2001), 79-105.
- [5] I. Mező, A q-Raabe formula and an integral of the fourth Jacobi theta function, J. Number Th., 133, No. 2 (2012), 692-702.
- [6] I. Mező, Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions, Proc. Amer. Math. Soc., 141, No. 7 (2013), 2401-2410.