

JORDAN-FOX DERIVATION ON GROUP RINGS

Sh.A. Safari Sabet¹, Mahmoud Karami² [§], Shervin Sahebi³

^{1,2,3}Department Of Mathematics

Islamic Azad University

Central Tehran Branch, 13185/768, Tehran, IRAN

Abstract: In this paper we introduce Jordan-Fox derivation on a group ring RG and give some sufficient conditions under which the Jordan-Fox derivation is Fox derivation.

AMS Subject Classification: 16S34, 13N15, 16N60

Key Words: group ring, prime ring, Fox derivation, Jordan-Fox derivation

1. Introduction

Let RG be the group ring of a group G over a ring with unitary R . We shall denote by $Z(R)$ the center of a ring R . We have a ring homomorphism (the augmentation map) defined by $R^\varepsilon = R$ and $G^\varepsilon = 1$. An additive mapping $' : RG \rightarrow RG$ will be called a Fox derivation, if $(ab)' = a'b^\varepsilon + ab'$ holds for all pairs $a, b \in RG$, see [1]. We call an additive mapping $' : RG \rightarrow RG$ a Jordan-Fox derivation, if $(a^2)' = a'a^\varepsilon + aa'$ holds for all $a \in RG$. Obviously, every Fox derivation is Jordan-Fox derivation. The converse is in general not true. Our main result in this paper is the following theorem.

Received: September 29, 2013

© 2013 Academic Publications

[§]Correspondence author

Theorem 1.1. *Let R be a prime ring with characteristic different from two, G be a group that has no finite normal subgroup $\neq \{1\}$, RG be a group ring of G over R , ε be augmentation map, and $': RG \rightarrow RG$ be a Jordan-Fox derivation. If $a^\varepsilon, b^\varepsilon \in Z(R)$ implies $b'a^\varepsilon + ba' - a'b^\varepsilon - ab' = 0$, then $'$ is a Fox derivation.*

2. Main Results

In preparation for the proof of Theorem 1.1, we start with the following propositions.

Proposition 2.1. *Let RG be a group ring such that $\text{char}R \neq 2$. If $'$ is a Jordan-Fox derivation of RG , then for all $a, b \in RG$ we have:*

$$(i) \ (ab + ba)' = a'b^\varepsilon + ab' + b'a^\varepsilon + ba.'$$

$$(ii) \ (aba)' = a'b^\varepsilon a^\varepsilon + ab'a^\varepsilon + aba'.$$

$$(iii) \ (abc + cba)' = a'b^\varepsilon c^\varepsilon + ab'c^\varepsilon + abc' + c'b^\varepsilon a^\varepsilon + cb'a^\varepsilon + cba'.$$

Proof. Since $(a^2)' = a'a^\varepsilon + aa'$, by replacing a by $a + b$ we obtain:

$$\begin{aligned} ((a + b)^2)' &= (a + b)'(a + b)^\varepsilon + (a + b)(a + b)' \\ &= (a' + b')(a^\varepsilon + b^\varepsilon) + (a + b)(a' + b') \\ &= a'a^\varepsilon + a'b^\varepsilon + b'a^\varepsilon + b'b^\varepsilon + aa' + ab' + ba' + bb'. \end{aligned} \tag{1}$$

On the other hand,

$$\begin{aligned} ((a + b)^2)' &= (a^2 + ab + ba + b^2)' \\ &= (a^2)' + (ab)' + (ba)' + (b^2)' \\ &= a'a^\varepsilon + aa' + (ab)' + (ba)' + b'b^\varepsilon + bb'. \end{aligned} \tag{2}$$

By comparing (1) and (2), (i) holds. Now let $w = (a(ab + ba) + (ab + ba)a)$ therefore by (i) we obtain

$$\begin{aligned} w' &= a'(ab + ba)^\varepsilon + a(ab + ba)' + (ab + ba)'a^\varepsilon + (ab + ba)a' \\ &= a'a^\varepsilon b^\varepsilon + a'b^\varepsilon a^\varepsilon + aa'b^\varepsilon + a^2b' + ab'a^\varepsilon + aba' \\ &\quad + a'b^\varepsilon a^\varepsilon + ab'a^\varepsilon + b'(a^\varepsilon)^2 + ba'a^\varepsilon + aba' + baa'. \end{aligned} \tag{3}$$

On the other hand,

$$\begin{aligned}
 w' &= ((a^2b + ba^2) + 2aba)' = (a^2b)' + (ba^2)' + 2(aba)' \\
 &= (a^2)'b^\varepsilon + a^2b' + b'(a^2)^\varepsilon + b(a^2)' + 2(aba)' \\
 &= (a'a^\varepsilon + aa')b^\varepsilon + a^2b' + b'(a^\varepsilon)^2 + b(a'a^\varepsilon + aa') + 2(aba)' \\
 &= a'a^\varepsilon b^\varepsilon + aa'b^\varepsilon + a^2b' + b'(a^\varepsilon)^2 + ba'a^\varepsilon + baa' + 2(aba)'.
 \end{aligned} \tag{4}$$

By comparing (3) and (4), (iii) holds, since RG is of characteristic not 2. At last, by replacing a by $a + c$ in (ii), we have

$$\begin{aligned}
 ((a + c)b(a + c))' &= a'b^\varepsilon a^\varepsilon + ab'a^\varepsilon + aba' + c'b^\varepsilon c^\varepsilon + cb'c^\varepsilon + cbc' \\
 &\quad + (abc + cba)'.
 \end{aligned} \tag{5}$$

On the other hand,

$$\begin{aligned}
 ((a + c)b(a + c))' &= (a + c)'b^\varepsilon(a + c)^\varepsilon + (a + c)b'(a + c)^\varepsilon \\
 &\quad + (a + c)b(a + c)' \\
 &= a'b^\varepsilon a^\varepsilon + a'b^\varepsilon c^\varepsilon + c'b^\varepsilon a^\varepsilon + c'b^\varepsilon c^\varepsilon \\
 &\quad + ab'a^\varepsilon + ab'c^\varepsilon + cb'c^\varepsilon + cb'a^\varepsilon \\
 &\quad + aba' + abc' + cba' + cbc'.
 \end{aligned} \tag{6}$$

By comparing (5), (6) we deduce (iii). \square

For any Jordan fox derivation ' we shall write a^b for

$$(ab)' - a'b^\varepsilon - ab'.$$

Corollary 2.2. $a^b = -b^a$.

Corollary 2.3. $a^{b+c} = a^b + a^c$.

Proof.

$$\begin{aligned}
 a^{b+c} &= (a(b + c))' - a'(b + c)^\varepsilon - a(b + c)' \\
 &= (ab + ac)' - a'b^\varepsilon - a'c^\varepsilon - ab' - ac' \\
 &= (ab)' - a'b^\varepsilon - ab' + (ac)' - a'c^\varepsilon - ac' \\
 &= a^b + a^c.
 \end{aligned}$$

Proposition 2.4. *Let RG be a group ring, R be a ring of characteristic not 2 and ' : $RG \rightarrow RG$ be a Jordan-Fox derivation. In this case for all $a, b, r \in RG$ we have:*

$$a^b r^\varepsilon (a^\varepsilon b^\varepsilon - b^\varepsilon a^\varepsilon) + (ab - ba)ra^b = 0.$$

Proof. Set $w = abrba + barab$. Then by (ii) of Proposition 2.1, we have:

$$\begin{aligned}
 w' &= (a(brb)a + b(arb)b)' \\
 &= a'(brb)^\varepsilon a^\varepsilon + a(brb)'a^\varepsilon + a(brb)a' \\
 &\quad + b'(ara)^\varepsilon b^\varepsilon + b(arb)'b^\varepsilon + b(arb)b' \\
 &= a'(brb)^\varepsilon a^\varepsilon + ab'r^\varepsilon b^\varepsilon a^\varepsilon + ab'r'b^\varepsilon a^\varepsilon \\
 &\quad + abrb'a^\varepsilon + a(brb)a' + b'(ara)^\varepsilon b^\varepsilon \\
 &\quad + ba'r^\varepsilon a^\varepsilon b^\varepsilon + bar'a^\varepsilon b^\varepsilon + bara'b^\varepsilon + b(arb)b'.
 \end{aligned} \tag{7}$$

On the other hand by (iii) of Proposition 2.1, we obtain:

$$\begin{aligned}
 w' &= ((ab)r(ba) + (ba)r(ab))' \\
 &= (ab)'r^\varepsilon(ba)^\varepsilon + ab'r'(ba)^\varepsilon + abr(ba)' + (ba)'r^\varepsilon(ab)^\varepsilon \\
 &\quad + (ba)r'(ab)^\varepsilon + (ba)r(ab)'.
 \end{aligned} \tag{8}$$

By comparing (7) and (8) the proof is complete. \square

Proposition 2.5. *Let G be a group ring, R be a prime ring of characteristic not 2 and G be an abelian group that has no finite normal subgroup $\neq \{1\}$. Let $a, b \in RG$ and $ar^\varepsilon b^\varepsilon + bra = 0$ for all $r \in RG$. Then $a = 0$ or $b^\varepsilon = 0$.*

Proof. Replacing r by sbt with $s, t \in RG$ we get $as^\varepsilon b^\varepsilon t^\varepsilon b^\varepsilon + bsbt = 0$. But $as^\varepsilon b^\varepsilon = -bsa$ and $bta = -at^\varepsilon b^\varepsilon$; substituting these we get $-bsat^\varepsilon b^\varepsilon - bsat^\varepsilon b^\varepsilon = 0$, that is, $2b(RG)a(RG)^\varepsilon b^\varepsilon = 0$. Since $\text{char } RG \neq 2$ and RG is prime by [2], this immediately gives $a = 0$ or $b^\varepsilon = 0$. \square

Proof of Theorem 1.1. Let a and b be fixed elements from RG . If $(ab - ba)^\varepsilon \neq 0$, then from Propositions 2.4 and 2.5, we obtain that $a^b = 0$. If $(ab - ba)^\varepsilon = 0$ and $(ac - ca)^\varepsilon \neq 0$ for some $c \in R$, but $(br - rb)^\varepsilon = 0$ for any $r \in R$. Then $a^c = 0$ and $a^{b+c} = 0$ thus $a^b = 0$. It remains to prove $(br - rb)^\varepsilon = 0$ and $(ar - ra)^\varepsilon = 0$ for any $r \in R$. In this case $a^\varepsilon, b^\varepsilon \in Z(k)$ so $b'a^\varepsilon + ba' - a'b^\varepsilon - ab' = 0$. Therefore we deduce the result by (i) in Proposition 2.1. \square

Acknowledgments

This paper is extracted from Phd Project that is done in Islamic Azad University Tehran Central Branch (IAUCTB). Authors want to thank the authority of IAUCTB for their support to complete this research.

References

- [1] R.H. Fox, Free differential calculus. I: Derivation in the free group ring, *Ann. of Math.*, **57** (1953), 547-560.
- [2] T.Y. Lam, *A First Course in Noncommutative Rings*, Springer, New York (2001).

