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Abstract: The survival analysis is a powerful statistical methodology widely
used in the medical research. In this paper, intercept as well as regression
analyses are carried out for real survival data problems with censoring mech-
anisms only. The Bayesian approach is implemented with R and appropriate
illustrations are also made.
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1. Introduction

The analysis of survival data is a major focus of the statistics business. The
main subject of this paper is the analysis of survival data using two parametric
models, namely Weibull and lognormal. The Weibull and lognormal models
both are very flexible and have been found to provide a good description of many
types of time-to-event data. These are distributions which occupy a central role
because of their demonstrated usefulness in a wide range of situations. There are
many potential life time models but these two models are used quite effectively
to analyze skewed data sets and to give best data fit. The Weibull distribution
has two parameters: shape and scale. Its density, survival and hazard functions,
are respectively:
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F(t) = AB(At)P ! exp[— (A1),
S(t) = exp[—(t)7],
h(t) = AB(A)P 7,

where A > 0 and 8 > 0 are the rate and shape parameters, respectively. The
corresponding probability density, survival and hazard function of the lognormal

1 1 logt—,u>2
)= ———exp |5 (L) |, t>0,
7o) (277)%025 o [ 2 < o ] g

S<t>=1_q>(logt7—ﬂ)’

model are:

o

h(t) = @
S5(t)
One important feature of the survival data is the presence of censoring, which
create special problems in the analysis of the survival data. The lifetime data are
censored when the exact failure time for a specific trial is unknown. When an-
alyzing the censored data, the Bayesian methods have an important advantage
over the classical methods. From a classical perspective, confidence interval and
other inferential statements must be made with respect to repeated sampling
of the data. From Bayesian perspective, only the observed censoring pattern
is relevant. There are several categories of censoring, but in this paper we will
discuss only right censoring mechanism.
The likelihood function for right censored data is

n n

L =[] Prit.6) = [ S@1 (1)

i=1 i=1

where ¢; is an indicator variable which takes value 1 if the observation is uncen-
sored, and 0 otherwise. Section 2 begins with a brief discussion of the Bayesian
analysis of intercept model based on the Weibull and lognormal distribution.
Next Section 3 contains the analysis of regression model with censoring. The
goal of regression is to understand the behaviour of response variable given
covariates. There has been growth in the development and application of the
Bayesian inference. The Bayesian inference enable us to fit very complex model
that can not be fit by alternative frequentist methods. To fit the Bayesian
models, one needs a statistical computing environment. An environment that
meets these requirements is the R (R Development Core Team [6]) software.
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In this paper, an attempt has been made to illustrate the Bayesian modeling
by using the R language. The package used in the paper to get the poste-
rior summary is LaplacesDemon Hall [3] which reveals the conceptual simplic-
ity of the Bayesian approach for survival data analysis. This package have
several optimization and simulation algorithms. The default optimization al-
gorithm is LBFGS (Broyden-Fletcher-Goldfarb-Shanno). Also a very popular
algorithm, i.e. the Nelder-Mead [5], is a derivative-free, direct search method
which is efficient in small-dimensional problems. The LaplacesDemon offers
numerous MCMC algorithms for simulation in Bayesian inference, and are,
Random-Walk Metropolis (RWM), Metropolis-within-Gibbs (MWG), Delayed
Rejection Metropolis (DRM), etc. This package provides a complete Bayesian
environment to the user. Section 4 provides a model compatibility study based
on Bayesian predictive information criteria (BPIC) so that the choice of these
two models can be justified for the data under consideration. Finally, in the
last section a brief discussion and conclusion is given.

2. Fitting of Intercept Model

Here we want to make inferences about the response and intercept. In this
section we will consider two models, the Weibull and lognormal models and the
data discussed here are the remession times, in weeks, for a group of 30 patients
with leukemia who received similar treatments, see Lawless [4].

time(weeks): 1,1,2,4,4,6,6,6,7,8,9,9,10,12,13,14,18,19,24,26,
29,31,42,45,50,57,60,71,85,91

The intercept model is in the form of
y=pte,
y ~ Weibull(a,b),
where, a and b are the shape and scale parameters and p = X3,
log(b) = X3
B ~ N(0,1000)
a ~ hal fcauchy(25).

Here we focus on right censored survival data since this type of data are most
frequently encountered in applications.
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2.1. Fitting of Weibull Model

The Weibull distribution has two parameters, shape and scale. It can be de-
noted as
Yy~ W(CL, b)

thus, the likelihood is

which implies log-likelihood as

ot = 3t (5 () e [-(5)7).
=1

Using Equation (1), this loglikelihood including censoring mechanism is ex-
pressed in R as:

loglikelihood<-sum[censor*(dweibull (x=y,shape=a,scale=b,log=T)+
(1-Censor)pweibull (x=y,shape=a,scale=b,lower.tail=F,log.p=T))]

Now, prior for regression coefficient 8 and shape parameter is normal with
mean 0 and standard deviation 1000 and half-Cauchy with scale parameter

) and

25, respectively. Consequently, logprior for 8 and shape are — (ﬁm

log (%), respectively, which can be expressed in R as

beta.prior<-dnorm(beta,0,1000,log=T)
shape.prior<-dhalcauchy(shape,25,1log=T)

Thus,
logposterior= loglikelihood+beta.prior+shape.prior

Bayesian fitting of Weibull model for this data can be done in R by using the function
LaplaceApproximation, and then with LaplacesDemon. Its fitting includes codes for
creation of data and definition of model as discussed above. The R codes to fit Weibull
model are described below.

library(LaplacesDemon)
options(digits=2)
y<-c(1,1,2,4,4,6,6,6,7,8,9,9,10,12,13,14,18,19,24,26,29,31,
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42,45,50,57,60,71,85,91)

censor<-c(rep(1,21),0,1,0,0,1,1,0,0,1)

N<-30

J<-1

X<-matrix(1,nrow=length(y))

mon.names<-c("LP","shape")
parm.names<-as.parm.names (list (beta=rep(0,J),log.shape=0))
MyData<-list (J=J,X=X,mon.names=mon.names,parm.names=parm.names,y=y)
Initial.Values <- c(rep(0,J), log(1))

Model<-function(parm,Data)

{

beta<-parm[1:Data$J]

shape<-\exp(parm[Data$J+1])
beta.prior<-sum(dnorm(beta,0,1000,log=T))

shape.prior<-dhalfcauchy (shape,25,log=T)
mu<-tcrossprod(beta,Data$X)

scale<-\exp (mu)

LL<-sum(censor*dweibull (Data$y,shape,scale,log=T)+

(1-censor) *pweibull (Data$y, shape,scale,log.p=T,lower.tail=F))
LP<-LL+beta.prior+shape.prior

Modelout<-1ist (LP=LP,Dev=-2*LL,Monitor=c(LP, shape) ,yhat=mu, parm=parm)
return(Modelout)

}
Mi<-LaplaceApproximation(Model,Initial.Values,Data=MyData,Sample=10000,
Iterations=10000)

Initial.Values<-as.initial.values(M1)
M10<-LaplacesDemon(Model,Data=MyData,Initial.Values,Status=FALSE)

The output obtained from M1, M10 objects are summarized in Table 1, Ta-
ble 2 and Table 3, respectively.

Mode  SD LB UB
beta  3.37 0.24 289 3.86
log.shape -0.18 0.16 -0.50 0.14

Table 1: Approximated  posterior  summary  using
LaplaceApproximation function with posterior mode, poste-
rior sd and their quantiles.
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Mean SD LB Median UB
beta  3.38 0.25 2.89 3.38  3.89
log.shape -0.23 0.17 -0.57 -0.22  0.08

Table 2: Simulated posterior summary using sampling importance
resampling with posterior mean, posterior sd and their quantiles.

Mean SD LB Median UB
beta  3.41 0.26 2.88 3.39 3.91
log.shape -0.23 0.17 -0.56 -0.22  0.08

Table 3: Simulated posterior summary using LaplacesDemon func-
tion with posterior mean, posterior sd and their quantiles

2.2. Fitting of Lognormal Model

The lognormal distribution is another parametric function widely used in sur-
vival analysis. In survival analysis, if the event time Y is lognormally distributed,
then log Y is normally distributed, denoted by

logY ~ N(p,0?).
Model,
y=pte,
y ~ lognormal(p, o),

where p and o are the location and scale parameters with p = Xp.
Prior,

B ~ N(0,1000),

o ~ hal fecauchy(25),

1 1 [(logy — 2
p(y)=—F—exp |—5 | ——— ) t>0,
(2m)20y 2 o

thus the likelihood is

n

B L1 (logy —p\*?
o) =11 o p[ ; (2t )]

i=1
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which implies log-likelihood as,

n

logp(ylp, o) =

1 1 (logy—,u>2
1 Xp 5| )
i—1 (2m)2oy 2 g

this likelihood with censoring is expressed n R as

loglikelihood<-sum[censor*dnorm(x=y,location=mu,scale=signma,
log=T)+(1-censor)*pnorm(x=y,location=mu,scale=sigma,lower.tail=
F,log.p=T)

Now, prior for regression coefficient 8 and sigma parameter is normal with
mean 0 and standard deviation 1000 and half-Cauchy with scale parameter

25, respectively. Consequently, logprior for § and sigma are — (%) and

log (%), respectively, which can be expressed in R as

beta.prior<-dnorm(beta,0,1000,1log=T)
sigma.prior<-dhalcauchy(sigma,25,log=T)

Thus,
logposterior<-loglikelihood+beta.prior+sigma.prior

All R codes are not reported and are skipped without loss of continuity. Ap-
proximate and simulated posterior summries are reported Table 4, Table 5 and
Table 6, respectively.

Mode SD LB UB
beta  2.77 0.26 2.24 3.29
log.sigma 0.34 0.15 0.04 0.63

Table  4: Approximated  posterior = summary  using
LaplaceApproximation function with posterior mode, poste-
rior sd and their quantiles.

3. Bayesian Regression Analysis with Censoring

The next step, and perhaps the most applicable for practical work, is regression
analysis for censored data from a Bayesian perspective. The goal of regression is
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Mean SD MCSE ESS LB Median UB
beta  2.76 0.26 0.01 1000.00 2.27 2,78 3.27
log.sigma  0.36 0.13 0.00 1000.00 0.10 0.36  0.65

Table 5: Simulated posterior summary using sampling importance
resampling with posterior mean, posterior sd and their quantiles.

Mean SD MCSE ESS LB Median UB
beta  2.82 0.29 0.04 100.00 2.29 2,77 3.44
log.sigma  0.36 0.14 0.02 100.00 0.14 0.37  0.65

Table 6: Simulated posterior summary using LaplacesDemon with
posterior mean, posterior sd and their quantiles.
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Figure 1: Graphical output of posterior density plots. Upper side
of the display is the posterior density plots of parameter of Weibull
model and lower side is posterior density plots of parameter of log-
normal model. Weibull model shows the overlap of two density plots
that is density plots generated by SIR and by simulation. However,
there is a little difference in lognormal case.

to summarize observed data as simply, usefully, and elegantly as possible. Here
we discuss and illustrate parametric regression models (the Weibull and lognor-
mal regression models) for the chemotherapy data available in the LearnBayes
package. The data is in the form of data frame with 26 observations on 5
variables, namely patient, time, status, treat, age. Edmunson et al. [2]
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Figure 2: Estimated survival curves of Weibull and lognormal model
for leukemia data. Survival time for Weibull is a little more than
that of lognormal model.

studied the effect of different chemotherapy treatments following surgical treat-
ment of ovarian cancer. Here, fitting is done between time as response variable
and treat and age as regressor. Techniques for assessing the fit of these two
parametric models is done by LaplacesDemon in R.

3.1. Fitting of Weibull Regression Model

In this section, we consider the Weibull regression model with two predictors,
treatment and age. Thus, the regression model is

Time = By + Bitreat; + Paage; + e;.

The approximated posterior mode and their standard deviation (in bracket) of
Weibull regression model with LaplaceApproximation is:

Bo = 7.393(1.687), 3 = 1.262(0.735),
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P2 = —0.043(0.021), shape = 1.512(1.53).

Posterior Summary of Weibull regression model with posterior mean and pos-
terior sd in bracket by sampling importance resampling is:

Bo = 10.44(1.015), B = 0.71(0.201),
P2 = —0.08(0.015), shape = 1.65(0.291).

Posterior Summary of Weibull regression model with posterior mean and pos-
terior sd in bracket by using LaplacesDemon:

Bo = 8.22(0.4029), p1 = 0.50(0.1563),
B2 = —0.04(0.0039), shape = 1.74(0.3522).
3.2. Fitting of Lognormal Regression Model

Posterior summary of lognormal regression model with LaplaceApproximation,
sampling importance resampling and LaplacesDemon is:

The approximated posterior mode and their standard deviation (in bracket)
of lognormal regression model with LaplaceApproximation is:

Bo = 7.393(1.687), B, = 1.262(0.735),

By = —0.043(0.021), sigma = 1.512(1.53).

Posterior Summary of lognormal regression model with posterior mean and
posterior sd in bracket by sampling importance resampling is:

By = 10.44(1.015), B, = 0.71(0.291),

P2 = —0.08(0.015), sigma = 1.65(0.291).

Posterior Summary of lognormal regression model with posterior mean and
posterior sd in bracket by using LaplacesDemon:

Bo = 8.22(0.4029), B, = 0.50(0.1563),

By = —0.04(0.0039), sigma = 1.74(0.3522).
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Figure 4: Survival curves for Weibull and lognormal regression model

3.3. Model Comparison

The Bayesian inference provides a model fit statistic that is to be used as a tool
to refine the current model or select the better-fitting model. In this section,
we will compare both models whose fitting is discussed in the above section



682 Y. Khan, A.A Khan

Model BPIC
Weibull (intercept model) 226
lognormal (intercept model) 222
Weibull (regression model) 184
lognormal (regression model) 186

Table 7: Table for comparison of Weibull and lognormal model for
both intercept and regression analysis. The table clearly shows that
for the analysis of intercept model lognormal model has the small
value of BPIC, hence lognormal model is the best fit for the data.
However, on the other hand, Weibull model in regression analy-
sis has low BPIC value meaning Weibull give appropriate fit for
chemotherapy data.

and their comparison is made from Bayesian perspective. Bayesian predictive
information criteria (BPIC) was introduced as a criterion of model comparison
whose goal is to pick a best model for respective survival data. BPIC is a
variation of DIC where the effective number of parameters is 2pD.

4. Conclusion and Discussion

In this article we are concerned with only right censored survival data. The
Bayesian analysis shows that for the analysis of survival data which are gener-
ally not symmetric and are positively skewed, will performed well when Weibull
or lognormal distribution is used for modeling. It has been observed that there
is a very close relation between these two models. It may be noted that model
comparison is made in Bayesian setup. In fitting of intercept model, lognor-
mal model is found to be the best model as it has low value of BPIC than
Weibull. Contrary to this, in regression modeling Weibull is the model which is
appropriate for the analysis of chemotherapy data. It could be seen that, there
is very small difference in BPIC values for both models in both intercept and
regression analysis. Thus, it is justified that the use of Weibull and lognormal
model is appropriate for these two data sets. Hence, we can say that these two
models could be a good choice for the analysis of survival data. The use of
Laplace approximation method made a great contribution in Bayesian frame-
work. However, being an asymptotic approach one of the limitations of this
approach is that this method is recommended for the data whose sample size is
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at least 5 times of the number of parameters available in a particular statistical
model and it has been found in the present study that this approximation works
well. Bernardo and Smith [1] note that Laplace approximation is an attractive
numerical approximation algorithm, and will continue to develop.

1]

2]
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