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Abstract: This paper is concerned with the construction and numerical
analysis of Extended Exponential General Linear Methods (EEGLM). These
methods are related to the methods of Butcher [1] and Calvo and Palencia [3]
but, in contrast to the latter, we make use of higher terms of the exponential and
related matrix functions. This feature enables us to derive the order conditions
which in turn aided in the construction of family of methods of higher order.
The numerical experiments indicate that Extended Exponential General Linear
Methods perform better than the existing methods.
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1. Introduction

Although the theory of numerical methods for time integration is well estab-
lished for a general class of problems, recently due to improvements in the
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efficient computation of the exponential function, exponential integrators for
problems

y′(t) = Ly(t)) +N(y(t)), 0 ≤ t ≤ T, given y(0),

have emerged as a viable alternative. In the early fifties, the phenomenon of
stiffness was first discovered by Curtis and Hirschfelder [4]. The stiffiness ef-
fectively yields explicit integrators useless, as stability rather than accuracy
governs how the integrator performs. It could be said that more integrators
have been developed to overcome the phenomenon of stiffiness, than any other
property that a differential equation may have. Butcher and Wright [2], pro-
vided a novel approach to solving stiff problems. Integrators were constructed,
which solve exactly the linear part of the problem and then used a change of
variables to cast the problem in a form, which a traditional explicit method can
be used to solve the transformed equation, the approximate solution is then
back transformed. These methods are commonly known as Integrating Factor
(IF) methods. Calvo and Palencia [3] constructed a class of methods known as
the RKMK methods. Enright and Muir [5] introduced the Generalized Inte-
grating Factor (GIF) methods which were shown to exhibit large improvements
in accuracy over the, IF, ETD and CF methods. It was concluded that the
ETD methods constructed though stable but could be improved on, so as to be
able to construct higher order.

2. Mathematical Formulation

In the past few years the exponential General Linear Methods for the problem

y′(t) = Ly(t)) +N(y(t)), 0 ≤ t ≤ T, given y(0), (1)

have attracted a lot of interest. Hence, this paper dwells on the construction
of extended exponential general linear methods (EEGLM) for the autonomous
problem (1).

For given starting values y0, y1, · · · yq−1, the theoretical approximation yn+1

at time tn+1,n ≤ q − 1, is given by the recurrence relation or formula

yn+1 = ehlyn + h

s∑
i=1

Bi(hL)N(Yni) + h

q−1∑
k=1

Vk(hL)N(yn−k) . (2)

The internal stages Yni, 1 ≤ i ≤ s, are defined through

Yni = ecihlyn + h

i−1∑
j=1

A
(1)
ij (hl)N(ynj) + h

q−1∑
k=1

U
(1)
ik (hl)N(yn−k)
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+h2
i−1∑
j=1

A
(2)
ij (hl)N ′(ynj) + h2

q−1∑
k=1

U
(2)
ik (hl)N ′(yn−k). (3)

Throughout this paper we assume that these conditions are satisfied. The
coefficients can be represented in the following table.

A
(1)
21 U

(1)
21 · · ·U

(1)
2,q−1 A

(2)
21 U

(2)
21 · · ·U

(2)
2,q−1

...
. . .

... · · ·
...

...
. . .

... · · ·
...

A
(1)
s1 · · ·A

(1)
s,s−1 U

(1)
s1 · · ·U

(1)
s,q−1 A

(2)
s,s−1 · · ·A

(2)
s,s−1 U

(2)
s1 · · ·U

(2)
s,q−1

B1 · · ·Bs−1Bs V1 · · ·Vq−1

Table 1: Coefficients table

3. Order Conditions for the Extended

Exponential General Linear Methods

Deriving the order conditions for the method (2), we assume the data to be
sufficiently regular. In particular, we require that the nonlinearity evaluated
at the exact solution f(t) = N(y(t)) is sufficiently differentiable with respect
to t for 0 < t < T . Before deriving the order conditions for this method, we
state and prove the lemma below which will form the basis of proving the order
conditions.

Lemma 1. The exact solution of the initial value problem

y′ = Ly + f(t), t ≥ tn, with given y(tn), (4)

has the following representation

y(tn + τ) = elτy(tn) +

m−1∑
ℓ=0

τ (l+1)ψℓ+1(lτ)f
(l)(tn) +Rm(m, τ) (5)

with

Rm(m, τ) =

∫ τ

0
r(τ−σ)

∫ σ

0

(σ − ξ)m−1

(m− 1)!
f (m)(tm + ξ)dξdσ.



266 U.A. Osisiogu, F.E. Bazuaye

Proof.

f(tn + σ) = tn + σf(tn) +
σ2

2!
f (2)(tn) + · · ·+

σm−1

(m− 1)!
f (m−1)(tn)

+

∫ σ

0

(σ − ξ)m

(m!)
f (m)(tn + ξ)dξ.

But

y(tn + τ) = eτLy(tn) +

∫ τ

0
e(τ−σ)f(tn + σ)dσ, τ ≥ 0. (6)

Inserting equation (6) into equation (7) above, we have

y(tn + τ) = eτLy(tn) +

∫ τ

0
e(τ−σ)[f(tn) + σf(tn)

σ2

2!
f (2)f(tn) + · · ·

+
σm−1

(m− 1)!
fm−1f(tn]dσ +

∫ τ

0

(σ − ξ)m−1

(m− 1)!
fmf(tn + ǫ)dσ. (7)

Applying the definition of the ψ functions, we have

y(tn + τ) = eτLy(tn) +

m−1∑
ℓ=0

τ ℓ+1ψℓ+1f
(1)(tn) +Rn(m, τ), (8)

where

Rn(m, τ) =

∫ τ

0
r(τ−σ)

∫ τ

0

(σ − ξ)m−1

(m− 1)!
f (m)f(tn + ξ)dσ, τ ≥ 0,

yn+1 = ehlyn + h

s∑
i=1

Bi(hL)N(Yni) + h

q−1∑
k=1

Vk(hL)f(tn − kh), (9)

and the internal stages are defined through

Yni = ecihlyn + h

i−1∑
j=1

A
(1)
ij (hl)f(tnj) + h

q−1∑
k=1

U
(1)
ik (hl)f(tn − kh)

+h2
i−1∑
j=1

A
(2)
ij (hl)f ′′(tn + hcj) + h2

q−1∑
k=1

U
(2)
ik (hl)f ′(tn − kh), 1 ≤ i ≤ S. (10)
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Expanding the functions in the equation above

f(tn + cjh) = f(tn) + cjhf
′(tn +

(cjh)
2

2!
f ′′(tn) +

(cjh)
3

3!
f (3)(tn)

+ · · ·+
(cjh)

m−1

(m− 1)!
f (m−1)(tn) +R(s,m), (11)

where

R(s,m) =

∫ τ

0

(σ − ξ)m

m!
f (m)(tn + ξ)dξ,

f(tn − kh) = f(tn)− (kh)f ′(tn +
(−kh)2

2!
f ′′(tn) +

(−kh)3

3!
f (3)(tn)

+ · · ·+
(−kh)m−1

(m− 1)!
f (m−1)(tn) +R(s, r), (12)

f ′(tn + cjh) = f ′(tn) + cjhf
′′(tn) +

(cjh)
2

2!
f (3)(tn) +

(cjh)
3

3!
f (iv)(tn) + · · ·

+
(cjh)

m−1

(m− 1)!
f (m)(tn) +R(s,m), (13)

f ′(tn − kh) = f ′tn) + (−kh)f ′′(tn +
(−kh)2

2!
f (3)(tn) +

(−kh)3

3!
f (iv)(tn)

+ · · ·+
(−kh)m−1

(m− 1)!
f (m)(tn) +R(s,m), (14)

f(tn + cih) = f(tn) + (cihf
′(tn) +

(cih)
2

2!
f ′′(tn) +

(cih)
3

3!
f (3)(tn)

+ · · ·+
(cih)

m−1

(m− 1)!
f (m−1)(tn) +R(s,m). (15)

Substituting where appropriate into (10) we have

yn+1 = ehLyn + h

s∑
i=1

BiN(Yni) + h

q−1∑
k=1

Vk[f(tn)− (kh)f ′(tn) +
(−kh)2

2!
f ′′(tn)
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+
(−kh)3

3!
f (3)(tn) + · · · +

(−kh)m−1

(m− 1)!
f (m−1)(tn +R(s, r)], (16)

Yni = ecihLyn + h

i−1∑
j=1

A
(1)
ij [f(tn) + cjhf

′(tn +
(cjh)

2

2!
f ′′(tn) +

(cjh)
3

3!
f (3)(tn)

+ · · ·+
(cjh)

m−1

(m− 1)!
f (m−1)(tn) +R(s,m)]

+h

q−1∑
k=1

U
(1)
ik [f(tn)− (kh)f ′(tn +

(−kh)2

2!
f ′′(tn) +

(−kh)3

3!
f (3)(tn)+

· · ·+
(−kh)m−1

(m− 1)!
f (m−1)(tn) +R(s, r) + h2

i−1∑
j=1

A
(2)
ij [f ′(tn) + (−kh)f ′′(tn)

+
(−kh)2

2!
f (3)(tn) +

(−kh)3

3!
f (iv)(tn) + · · ·+

(−kh)m−1

(m− 1)!
f (m)(tn) +R(s,m)]

+h2
q−1∑
k=1

U
(2)
ik [f ′tn) + (−kh)f ′′(tn +

(−kh)2

2!
f (3)(tn) +

(−kh)3

3!
f (iv)(tn)

+ · · ·+
(−kh)m−1

(m− 1)!
f (m)(tn) +R(s,m)]. (17)

Substituting the exact solution values

yn = yn, Yni = y(tn + cih), 1 ≤ i ≤ s, n ≥ 0, (18)

y(tn + cih) = ecihLyn + cih

∫ 1

0
e(1−τ)cihLf(tn + cih)dτ, (19)

f(tn + cih) = f(tn) + (hci)f
′(tn) +

(hci)
2

2!
f ′′(tn) +

(hci)
3

3!
f ′′′(tn)

+ · · ·+
(hci)

m−1

(m− 1)!
f (m−1)(tn) +R(s,m). (20)

Inserting (24) into (23), we get

y(tn + cih) = ecihLyn + h

∫ 1

0
e(1−τ)cihL[f(tn) + (hci)f

′(tn) +
(hci)

2

2!
f ′′(tn)
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+
(hci)

3

3!
f ′′′(tn) + · · ·+

(hci)
m−1

(m− 1)!
f (m−1)(tn) +R(s,m)]. (21)

Similarly,

y′(tn + cih) = ecihLyn + h

∫ 1

0
e(1−τ)cihLf ′(tn + cih), (22)

f ′(tn + cih) = f ′(tn) + cihf
′′(tn) +

(cih)
2

2!
f ′′′(tn)

+
(cih)

3

3!
f (iv)(tn) + · · ·+

(cih)
m−2

(m− 2)!
f (m−1)(tn) +R(s,m), (23)

and inserting (24) into (23) we get

y′(tn + cih) = ecihLyn + h

∫ 1

0
e(1−τ)cihL[f ′(tn) + cihf

′′(tn)

+
(cih)

2

2!
f ′′′(tn) +

(cih)
3

3!
f (iv)(tn) + · · ·+

(cih)
m−2

(m− 2)!
f (m−1)(tn) +R(s,m)]. (24)

Subtracting (18) from (20) which denotes the defect (Dni) of the stages and
expressing them in terms of h, we have

h1 := ci

∫ 1

0
e(1−τ)cihLf(tn)dτ −

i−1∑
j=1

A
(1)
ij f(tn)−

q−1∑
k=1

U
(1)
ik f(tn),

h2 :=
c2i
2!

∫ 1

0
e(1−τ)cihLf ′(tn)dτ − cj

i−1∑
j=1

A
(1)
ij f

′(tn)− (−k)

q−1∑
k=1

U
(1)
ik f

′(tn)

−

i−1∑
j=1

A
(2)
ij f

′(tn)−

q−1∑
k=1

U
(2)
ik f

′(tn),

h3 :=
c3i
3!

∫ 1

0
e(1−τ)cihLf ′′(tn)dτ −

c2j

2!

i−1∑
j=1

A
(1)
ij f

′′(tn)−
(−k)2

2!

×

q−1∑
k=1

U
(1)
ik f

′′(tn)− cj

i−1∑
j=1

A
(2)
ij f

′′(tn)− (−k)

q−1∑
k=1

U
(2)
ik f

′′(tn),
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...

hm :=
cmi
m!

∫ 1

0
e(1−τ)cihLf (m−1)(tn)dτ −

cm−1
j

(m− 1)!

i−1∑
j=1

A
(1)
ij f

(m−1)(tn)−
(−k)m−1

(m− 1)!

×

q−1∑
k=1

U
(1)
ik f

(m−1)(tn)−
cm−2
j

(m− 2)!

i−1∑
j=1

A
(2)
ij f

(m−1)(tn)

−
(−k)m−2

(m− 2)!

q−1∑
k=1

U
(2)
ik f

(m−1)(tn), (25)

Dni = hc1iψ1(cihL) + h2c2iψ2(cihL) + h3c3iψ3(cihL) + · · ·+ hQc
Q
i ψQ(cihL)

−

i−1∑
j=1

cℓ−1
j

(ℓ− 1)!
A

(1)
ij (hL)f (ℓ−1)(tn)

−

q−1∑
k=1

(−k)ℓ−1

(ℓ− 1)!
U

(1)
ik (hL)f (ℓ−1)(tn)−

i−1∑
j=1

cℓ−2
j

(ℓ− 2)!
A

(2)
ij (hL)f (ℓ−1)(tn) (26)

−

q−1∑
k=1

(−k)ℓ−2

(ℓ− 2)!
U

(2)
ik (hL)f (ℓ−1)(tn),

Dni =

Q∑
ℓ−1

hℓMℓi(hL)f
(ℓ− 1)(tn), (27)

where

Mℓi(hL) = cℓiψℓ(cihL)−

i−1∑
j=1

cℓ−1
j

(ℓ− 1)!
A

(1)
ij − [

q−1∑
k=1

(−k)ℓ−1

(ℓ− 1)!
U

(1)
ik (hL)]

−

i−1∑
j=1

cℓ−1
j

(ℓ− 1)!
A

(2)
ij −

q−1∑
k=1

(−k)ℓ−1

(ℓ− 1)!
U

(2)
ik (hL). (28)

Likewise, the numerical solution defects equals

dn+1 =

p∑
ℓ=1

hℓvℓ(hL)f
(ℓ−1)(tn) + · · · , (29)
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where

vℓ(hL) = ψℓ(hL)−

s∑
ℓ=1

cℓ−1
i

(ℓ− 1)!
Bi(hL)−

q−1∑
k=1

(k − 1)ℓ−1

(ℓ− 1)!
Vk(hL). (30)

Definition 2. Our numerical scheme (2) is said to be of stage order Q and
order P if Dni = 0(hQ+1) and dn+1 = 0(hP+1). That is, requiring Mℓi(hL) = 0
and vℓ(hL) = 0, we obtain the order conditions

cℓiψℓ(cihL) =

i−1∑
j=1

cℓ−1
j

(ℓ− 1)!
A

(1)
ij (hL) +

q−1∑
k=1

(−k)ℓ−1

(ℓ− 1)!
U

(1)
ik (hL)

+

i−1∑
j=1

cℓ−2
j

(ℓ− 2)!
A

(2)
ij (hL) +

q−1∑
k=1

(−k)ℓ−2

(ℓ− 2)!
U

(2)
ik (hL), (31)

ψℓ(hL) =

s∑
i=1

cℓ−1
j

(ℓ− 1)!
Bi(hL) +

q−1∑
k=1

(−k)ℓ−1

(ℓ− 1)!
Vk(hL), (32)

and so by definition ci = 0 for all 1 ≤ i ≤ s.

3.1. Construction of Extended Exponential General

Linear Methods of Order Three Step Two Stage Order Two

The extended exponential general linear methods order three step two stage
order two (known as methods 322) are given as

yn+1 = ehLyn + hB1(hL)N(Yn1) + hB2(hL)N(Yn2) + hV1N(yn−1),

Yn2 = ec2hLyn + hA21(hL)N(Yn1) + hU
(1)
21 (hL)N(yn−1)

+h2A
(2)
21 (hL)N

′(yn1) + h2U
(2)
21 (hL)N ′(yn−1). (33)

Again, making use of the order conditions (32) and (33), we have

c11A
(1)
21 + (−1)1U

(1)
21 + c01A

(2)
21 + (−1)0U

(2)
21 = ψ2,
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−U
(1)
21 +A

(2)
21 + U

(2)
21 = ψ2, (34)

c21
2!
A

(1)
21 +

(−1)2

2!
U

(1)
21 + c11A

(2)
21 + (−1)U

(2)
21 = c22ψ3(c2hL),

1

2
U

(1)
21 − U

(2)
21 = ψ3, (35)

c31
3!
A

(1)
21 +

c21
2!
A

(2)
21 +

(−1)3

3!
U

(1)
21 +

(−1)2

2!
U

(2)
21 = c32ψ4(c2hL),

1

6
U

(1)
21 +

1

2
U

(2)
21 = ψ4. (36)

Similarly,

c01B1 + c02B2 + (−1)0V1 = ψ1

B1 +B2 + V1 = ψ1 (37)

c11B1 + c12B2 + (−1)1V1 = ψ2

B2 − V1 = ψ2 (38)

1

2!
c21B1 +

1

2!
c02B2 +

1

2!
(−1)0V1 = ψ3 (39)

1

2
B2 +

1

2
V1 = ψ3. (40)

This gives

A
(2)
21 = 5ψ2 + 6ψ3

U
(1)
21 = 5(ψ2 + 2ψ3)

U
(2)
21 = 2(ψ2 + 3ψ3)

B1 = ψ1 − 2ψ3

B2 =
1

2
(ψ2 + ψ3)

V1 =
1

2
(−ψ1 + 2ψ2).
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This is represented in the following table.

0 5(ψ2 + 2ψ3) (5ψ2 + 6ψ3) 2(ψ2 + 3ψ3)

(ψ1 − 2ψ3)
1
2 (ψ2 + ψ3)

1
2(−ψ1 + 2ψ2)

Table 2: The coefficients of the extended Exponential General Linear
methods order three step two and stage order two (322)

3.2. Construction of Extended Exponential General

Linear Methods Order Five Step Two Stage Order Three

The extended exponential general linear methods order five step two stage order
three (known as method 523) are given as

yn+1 = ehLyn + hB1(hL)N(yn) + hV1N(yn−1) + hV2N(yn−2), (40)

Yn2 = ec2hLyn + hA21N(yn) + hU
(1)
21 N(yn−1) + hU

(1)
22 N(yn−2)

+h2U
(2)
21 N

′(yn−1) + h2U
(2)
22 N

′(yn−2), (41)

using the order conditions (32) and (33) to determine the coefficient matrix

c11A
(1)
21 + (−1)1U

(1)
21 + (−2)1U

(1)
22 + c01A

(2)
21

+(−1)0U
(2)
21 + (−2)0U

(2)
22 = ψ2,

therefore, − U
(1)
21 − 2U1

22 +A
(2)
21 + U

(2)
21 U

(2)
22 = ψ2, (42)

c21A
(1)
21 +

(−1)1

2!
U

(1)
21 +

(−2)2

2!
U

(1)
22 + (−2)U

(2)
22 = c32ψ3(c2hL),

1

2
U

(1)
21 + 2U

(1)
22 − U

(2)
21 − 2U

(2)
22 = ψ3, (43)

c31A
(1)
21 +

(−1)3

3!
U

(1)
21 +

(−2)3

3!
U

(1)
22 +

(−2)2

2!
U

(2)
21 +

(−2)2

2!
U

(1)
22 = c42ψ4(c2hL),

−1

6
U

(1)
21 +

−8

6
U

(1)
22 +

1

2
U

(2)
21 + 2U

(2)
22 = ψ4, (44)
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c41A
(1)
21 +

(−1)4

4!
U

(1)
21 +

(−2)4

4!
U

(1)
22 +

(−1)3

3!
U

(2)
21 +

(−2)3

3!
U

(2)
22 = c52ψ5(c2hL),

−1

24
U

(1)
21 +

16

24
U

(1)
22 +

−1

6
U

(2)
21 +

−8

6
U

(2)
22 = ψ5. (45)

Solving the equations above equations gives

B1 = (ψ1 +
1

6
ψ2 − 3ψ3 − ψ4),

B2 =
1

2
(ψ2 + 2ψ3),

V1 =
1

6
(−5ψ2 + 6ψ3 + 12ψ4),

V2 =
1

6
(ψ2 − ψ4).

3.3. Construction of Extended Exponential General

Linear Methods Order Five Step Two Stage Order Four

The extended exponential general linear methods order five step two stage order
four (known as methods 524) are given as

yn+1 = ehLyn + hB1(hL)N(yn) + hB2(hL)N(Yn2) + hV1N(yn−1)

= hV2N(yn−2) + hV3N(yn−3), (46)

Yn2 = ec2hLyn + hA21N(yn) + hU
(1)
21 N(yn−1) + hU

(1)
22 N(yn−2) + hU

(1)
23 N(yn−3)

+h2A
(2)
21 N

′(yn) + h2U
(2)
21 N

′(yn−1) + h2U
(2)
22 N

′(yn−2) + h2U
(2)
23 N

′(yn−3), (47)

using the order conditions (32) and (33) to determine the coefficient matrix, we
have

c11A
(1)
21 + (−1)1U

(1)
21 + (−2)1U

(1)
22 + (−3)1U

(1)
23 + c01A

(2)
21

+(−1)0U
(2)
21 (−2)0U

(2)
22 + (−3)0U

(2)
23 = ψ2,

−U
(1)
21 − 2U1

22 +A
(2)
21 + U

(2)
21 + U

(2)
22 + U

(2)
23 = ψ2, (48)

c21
1

2!
A

(1)
21 +

(−1)2

2!
U

(1)
21 +

(−2)2

2!
U

(1)
22 +

(−3)2

2!
U

(1)
23
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+(−1)1U
(2)
21 + (−2)(1)U

(2)
22 + (−3)1U

(2)
23 = ψ3,

1

2
U

(1)
21 + 2U

(1)
22 +

9

2
U

(1)
23 − U

(1)
21 − 2U

(2)
22 − 3U

(2)
23 = ψ3, (49)

1

3!
c31A

(1)
21 +

(−1)3

3!
U

(1)
21 +

(−2)3

3!
U

(1)
22 +

(−3)3

3!
U

(1)
23

+
(−1)2

2!
U

(2)
21 +

(−2)2

3!
U

(2)
22 +

(−3)2

3!
U

(2)
23 = ψ4,

therefore
−1

3!
U

(1)
21 +

−8

3!
U

(1)
22 +

−27

3!
U

(1)
23 +

1

2!
U

(2)
21 + 2U

(2)
22 +

9

2
U

(2)
23 = ψ4, (50)

1

4!
c41A

(1)
21

(−1)4

4!
U

(1)
21 +

(−2)4

4!
U

(1)
22 +

(−3)4

4!
U

(1)
23 ,

1

3!
c31A

(2)
21

(−1)3

3!
U

(2)
21 +

(−2)3

3!
U

(2)
22 +

(−3)3

3!
U

(2)
23 = ψ5,

therefore
1

4!
U

(1)
21 +

−16

4!
U

(1)
22 +

−81

4!
U

(1)
23 +

−1

3!
U

(2)
21 +

−8

3!
U

(2)
22 +

−27

3!
= ψ5,(51)

1

5!
c51A

(1)
21 +

(−1)5

5!
U

(1)
21 +

(−2)5

5!
U

(1)
22 +

(−3)5

5!
U

(1)
23

+
(−1)4

4!
U

(2)
21 +

(−2)4

4!
U

(2)
22 +

(−3)4

4!
U

(2)
23 = ψ6,

(−1

)
5!U

(1)
21 −

32

5!
U

(1)
22 −

243

5!
U

(1)
23 +

1

4!
U

(2)
21 +

16

4!
U

(2)
22 +

81

4!
U

(2)
23 = ψ6, (52)

1

6!
c61A

(1)
21 +

(−1)6

6!
U

(1)
21 +

(−2)6

6!
U

(1)
22 +

(−3)6

6!
U

(1)
23

+
(−1)5

5!
U

(2)
21 +

(−2)5

5!
U

(2)
22 +

(−3)5

5!
U

(2)
23 = ψ7,

1

6!
U

(1)
21 +

64

6!
U

(1)
22 +

729

6!
U

(1)
23 +

1

5!
U

(2)
21 −

32

5!
U

(2)
22 −

243

5!
U

(2)
23 = ψ7. (53)

Similarly,

c01B1 + c02B2 + (−1)0V1 + (−2)0V2 + (−3)0V3 = ψ1,



276 U.A. Osisiogu, F.E. Bazuaye

therefore B1 +B2 + V1 + V2 + V3 = ψ1, (54)

c11B1 + c12B2 + (−1)1V1 + (−2)1V2 + (−3)1V3 = ψ2,

therefore B2 − V1 − 2V2 − 3V3 = ψ2, (55)

1

2!
c21B1 +

1

2!
c22B2 +

1

2!
(−1)2V1 +

1

2!
(−2)2V2 +

1

2!
(−3)2V3 = ψ3,

therefore
1

2
B2 +

1

2
V1 + 2V2 +

9

2
V3 = ψ3, (56)

1

3!
c31B1 +

1

3!
c32B2 +

1

3!
(−1)3V1 +

1

3!
(−2)3V2 +

1

3!
(−3)3V3 = ψ4,

therefore
1

6
B2 −

1

6
V1 −

8

6
V2 −

27

6
V3 = ψ4, (57)

1

4!
c41B1 +

1

4!
c42B2 +

1

4!
(−1)4V1 +

1

4!
(−2)4V2 +

1

4!
(−3)4V3 = ψ5,

1

24
B2 +

1

24
V1 +

16

24
V2 +

81

24
V3 = ψ5. (58)

Simplifying the above equations, we have

B1 =
1

6
(6ψ1 + 5ψ2 − 10ψ4 − 24ψ5),

B2 =
1

12
(3ψ2 + 11ψ3 + 18ψ4 + 12ψ5)

V1 =
1

2
(−3ψ2 + ψ3 + 12ψ4 + 12ψ5)

V2 =
1

6
(3ψ2 + 2ψ3 − 18ψ4 − 25ψ5)

V3 =
1

12
(−ψ2 − ψ3 + 6ψ4 + 12ψ5).

Also,

U
(1)
21 =

3

23
(6ψ2 + 44ψ3 + 157ψ4 + 336ψ5 + 420ψ6 + 240ψ7)

U
(1)
22 =

3

46
(66ψ2 + 277ψ3 + 692ψ4 + 936ψ5 + 480ψ6 − 120ψ7)
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U
(1)
23 =

1

207
(78ψ2 + 1124ψ3 + 2961ψ4 + 1608ψ5 − 5580ψ6 − 7920ψ7)

U
(2)
21 =

6

23
(18ψ2 + 63ψ3 + 126ψ4 + 157ψ5 + 110ψ6 + 30ψ7)

U
(2)
22 =

3

23
(9ψ2 − 3ψ3 − 6ψ4 + 136ψ5 + 400ψ6 + 360ψ7)

U
(2)
23 =

3

69
(6ψ2 + 67ψ3 + 180ψ4 + 129ψ5 − 270ψ6 − 450ψ7).

4. Numerical Experiments

In this section, we illustrate the accuracies of different extended exponential
general linear methods.

Problem 1.
y′ =

y

4
(1−

y

20
), y(0) = 1

with explicit solution given as

y =
20

1 + 19 exp(−t4)
.

Our scheme 322 exhibits remarkable improvement over Calvo and Palencia’
results.

The graph of Extended Exponential General Linear Method 523 and Calvo
and Palencia.

The graph of Extended Exponential General Linear Method 322, 523 and
524.

Problem 2. Given

y′ = −10(y − 1)2, y(0) = 2 with t ∈ [0, 1],

with exact solution

y =
2 + 10t

1 + 10t
.

The graph of EEGKM 524, CEERK and CRKM.

Our scheme 524 compares favorably with the convergent Explicit Runge-
Kutta methods and Classical Runge-Kutta methods.



278 U.A. Osisiogu, F.E. Bazuaye

Figure 1

Figure 2



CONSTRUCTION OF EXTENDED EXPONENTIAL... 279

Figure 3

Figure 4
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Figure 5

5. Conclusions

In this paper we have investigated the construction of Extended Exponential
General linear methods using variation of constant formula. Its order conditions
were derived. These order conditions form the basis for the construction of
methods of higher order. The experimental experience reveals that our methods
perform better than the already existing ones.
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