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Abstract: In queuing literature, several queue and service disciplines have
been extensively studied along side various queuing systems. However, a re-
alistic queue and service discipline alludes the literature since 1909. In this
paper, we describe the discipline on the M/G/2 queue and give an account of
its stationary behavior under the assumption that the mean service rate of the
two servers are nowhere equal.
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1. Introduction

Since 1909 when the Danish mathematician Agner Krarup Erlang published his
fundamental paper on congestion in telephone traffic to date, one assumption
is normally employed by researchers in queuing theory. This is the assump-
tion that during the service process of a customer only one server provides him

service. In some instances, the assumption is diversified to include a group of
customers for a server as in bulk service models developed over the years. One
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may think that it is the sole schedule possibly realistic going by the quantum of
models developed with this one customer (or a group) one server assumption.
While this assumption holds good in physical systems of business, communica-
tions and telecommunications systems where servers are most often in parallel,
there are other service schedules in real life business applications that necessar-
ily do not allocate a single server to serve a customer. For instance there are
service shops where one may come across a service process involving both the
salesman and the boss (owner) providing services together such that if there is
only one customer then he is serviced by the salesman provided that no any
other one arrives during his service period. On the other hand, if at least an ar-
rival occurs then the boss joins the salesman serially that is; working jointly and
independently with the salesman to serve the initial customer. As a schedule,
if there are up to two customers in the shop then the boss joins the salesman
in service jointly but independently (one customer at a time being served by
more than one server) so that customers do not get bored by excessive waiting
and choose to renege or balk thereby making the business loose market.

Clearly, this service process is distinctively different from the well known
parallel server setup in that in the schedule exemplified above, two servers simul-
taneously serve a customer anytime whenever the number of customers becomes
equal to or exceeds the number of servers in the system. One may refer to this
service approach as serial service. A remarkable feature of the serial service
schedule is that, the service process does not violate the classical First Come
First Served (FCFS) queue discipline. Mostly found in shops, malls, supermar-
kets, offices, banks1 and other business outfits where heterogeneity of servers is
evident owing to factors such as degree of usage, experience, age, preferences
etc. These factors are the building blocks for server discrimination amongst
customers generally. When a businessman engages an experienced salesman
and an apprentice, a senior doctor and a junior doctor, a professor and a bach-
elor, etc as servers in a queuing system with a parallel structure, then the FCFS
queue discipline is violated, see Krishnamoorthy [2] and Benavides et al. [3]2.
This is because if the less reliable server (inferior server) is randomly chosen
by a customer ahead of the more reliable one (superior server), then there is a
tendency that customers that entered the system after him will check out earlier
thereby making him wait longer than expected. This type of service schedule
creates dissatisfaction amongst customer groups affected by such randomized
choice of servers and eventually will lead to abandonment, reneging, balking,
etc thereby reducing profits. Thus, there is the need to construct appropriate

1For instance, in a shopping mall during training session.
2Implied in this work also.
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service schedules that share the excess service times amongst customers equiv-
alently given that the FCFS discipline is maintained. A serial service schedule
describe in this work is a realistic alternative because of its adherence to the
FCFS discipline.

2. Traces in the Literature

Unfortunately, not so many works are found in the literature on this kind of
service schedules3 when compared with the volumes of work [For a survey see
Kim et al. [4], Kumar et al. [6], Shenkar and Weinrib [10], Singh [11], etc.] on
one server-one customer as in parallel case systems (see Emrah et al. [1]) even
though the service time process in a large number of production and business
centers are realistically in series. From the onset, the serial service schedule
appeared first in the literature about 50 years after the pioneering works of
A.K. Erlang4 in Krishnamoorthy [2] as a viable alternative for reducing waiting
times in uni-server queuing systems experiencing increasing service capacity.
Unfortunately, it was not analyzed. Between 1963-2012, it appears there are no
works in the literature on queuing systems following this schedule until early
2013 when Sivasamy and Kgosi [9] studied a queuing model under the serial
service structure and provided the stationary mean analysis. It was shown that
the analysis carried out could be used in designing the shortest processing time
in queuing systems found in operating machines. Recently in Sivasamy et al.
[8], we compared the steady state mean performance of the M/G/2 queuing
system under the serial and parallel service schedules. Using the embedded
method under the serial queue discipline and the supplementary variable tech-
nique under the parallel queue discipline, we present an exact analysis of the
steady state number of customers in the system and most importantly, the ac-
tual waiting time expectation of customers in the system. It was shown that
for certain values of the server rates and under heavy traffic conditions,5 it is
operationally better to serially join service than allocating servers to distinct
customers as in the one customer one server case.

Our aim in this paper is to broaden the scope of the serial service discipline
by providing an in-depth analysis of its stationary behavior under any interest-
ingly realistic condition. This will define a robustness structure for the service

3It deludes the literature. For, our investigation shows that there are no works in queuing
system modeling that adopts such serial service as schedules for servicing customers.

4Implicitly in the work of Krishnamoorthy [2] on the Poisson queue with two heterogeneous
servers.

5When the joint servers occupation rate ρ1 → 1.
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process in question similar to others found in the literature. In addition, we
will carry out performance analysis to provide a base for selecting appropri-
ate service schedules for bettering performance, evaluating problem situations
for better management practice. For instance, the owner of the shop above
may wish to understand whether the serial service schedule under relatively
tightening realistic service conditions can minimize waiting times better when
compared with the parallel service schedule6 commonly adopted in business
applications and under what condition can the serial service be preferred, sub-
stituted, relaxed, etc.

As a justification, customers hate to wait especially if the excess waiting
time is due to the in-effectiveness of a service process. Consequently, they may
prefer to be served in any manner that will minimize their waiting time expec-
tations. Similarly, business owners will be happy to understand new strategies
and schedules necessary for maximizing profits. Thus, our work stands to ben-
efit both the customer and the service provider, owners, etc.

3. Serial Service on the M/G/2 Queue: Modeling

In this section, we describe the serial service discipline on a two-heterogeneous
server queuing system called the M/G/2 queue. The section is derived from
our work in Sivasamy et al [8] on the same queue under serial service.

By the M/G/2 queue with a serial service process, we refer to a representa-
tion of the form M/(M +G)/2 where customers arrive according to a Poisson
process with a mean arrival rate λ and receive service from the two serially
working heterogeneous servers in the system7. The service times of customers
is assumed to be independent of the inter-arrival times and without preemption.

For customers served by server-1 (the faster server), the service time T1

follows the exponential distribution with mean rate α1 i.e. G1(t) = P (T1 <

t) = 1 − e−α1 t with probability density function (PDF) g1(t) = dG1(t)
dt and

Laplace-Stieltjes Transform (LST) g∗1(s). Similarly, for customers serviced by
server-2 (the slow server), their service time distribution G2(t) = P [T2 < t] is
generally distributed with PDF g2(t), a mean β = E[T2] and a LST g∗2(s) given
by g∗2(s) =

∫∞

0 e−stg2(t)dt. We supposed that α2 = 1
β , ρ = λ

α1
. For stability,

the condition λ
k1α1+k2α2

< 1 is necessary where k1, k2 ∈ (0, 1). In the sequel, we

6A schedule where the two servers in the system serviced two different customers at a time.
7The serial service process here should not be confused with the one where a customer

takes service from a system of servers one at a time. Here, all servers serve a customer
simultaneously.
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supposed that this condition holds so that results are tractable, see Boxma et
al. [7]. In addition,

1. If a customer enters the system during idle state, his service process is
initiated by server-1. This customer receives an exponential service at a
mean service rate α1 if no other customer arrives during his ongoing ser-
vice period; otherwise the initial customer is served jointly by both servers
but independently according to the service time distribution Gmin(t) as
defined in item 2(i) below.

2. If the number of customers N(t) ≥ 2 any time, then server-2 serially join
server-1 to serve a customer receiving service serially.

To understand the server interaction process of the proposed M/(M+G)/2
model presented in this work, suppose there exist a supermarket with two sales-
men of varying degree of service experience, where the customer size N(t) is
such that N(t) ≥ 2 anytime with the condition that:

i. The queuing system is busy if and only if at least one of the two salesmen
is busy with service time distribution Gmin(t), PDF gmin(t) and LST
g∗min(s) =

∫∞

0 e−stgmin(t)d(t) = g∗1(s) + g∗2(s + α1)− g∗1(s) g
∗
2(s+ α1).

ii. If the system has only one customer, then the customer is served by
server-I entirely at a mean service rate α1 without being interrupted.

4. Stationary Behavior Under Varying Service Rates

This section discusses the stationary behavior of the M/G/2 queue under the
serial service process given that the service rates of the two servers are unequal8.
This implies that an arbitrary service is almost surely initiated by both servers
but completed by one only. For the case when the probability that a service
is completed by both servers is non zero, we refer the reader to our work in
Sivasamy et al. [8].

Lemma 4.1. Suppose P [N(t) = j] denotes the probability that there are

j customers in an M/(M +G)/2 queuing system at time t. Let P [N1(t) = j1]
and P [N2(t) = j2] denote the probability that j customers are left behind upon

8This may depict servers such as a senior and a junior doctor, an experience salesman and
an apprentice, etc. It is evident that the service rates are realistically unequal.
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departure event in the M/M/1 and the M/G/1 queuing systems respectively.

In steady state

P [N = j] = υ1P [N1 = j1] + υ2P [N2 = j2], (1)

where υ1 + υ2 = 1.

Proof. Consider a process {N(t), ζ(t)} where N(t) denotes the number of
customers in the M/(M +G)/2 queuing system at time t and ζ(t) is the past
service time already received by a customer on service. Looking at the system
at departure instants when the past service time ζ(t) = 0. Then {N(t), ζ(t)} is
a Markov process, see Medhi [5].

Now, if {N(t), ζ(t)} is time continuous, then as t → ∞, {N(t), ζ(t)} →
{N, ζ}. The remarks below give the properties of the stationary process {N, ζ}.

Remark 4.1. 1. Suppose j denotes the present state of the process
{N, ζ}. Then the associated Markov chain is two-state since a transition
from j resides only in (j − 1) and vice versa9.

2. Similarly, j ↔ (j − 1). Hence, the Markov chain is irreducible10.

3. Let k denote the number of steps to reach (j − 1) given that it is in j.
Then the gcd(k) = 1. Hence, the Markov chain is aperiodic.

By the ergodic theorem, the stationary probability P [N = j] = Rj will
satisfy the Kolmogorov difference equations below

λR0 =

(

υ1α1 +
(1− υ1)

β

)

R1, j = 0, (2)

(

λ+ υ1α1 +
(1− υ1)

β

)

Rj = λRj−1 +

(

υ1α1 +
(1− υ1)

β

)

Rj+1, j ≥ 1. (3)

Applying the Markov property of the system states, we obtained that

Rj =





λ

υ1α1 +
(1−υ1)

β





j

R0, (4)

9That is upon departure of a customer.
10By the rate-equality principle when a Poisson arrival occurs into the system.
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where R0 is the stationary probability that the system is idle. R0 can be derived
via the normalizing condition by summing Rj over j = 0 to j = ∞ and equating
the sum to one. Upon simplification, one obtains that R0 = 1 − λ

υ1α1+
(1−υ1)

β

.

Thus

Rj =





λ

υ1α1 +
(1−υ1)

β





j

(1− ρ̄1) = (1− ρ̄1)ρ̄1
j, (5)

where ρ̄1 = λ

υ1α1+
(1−υ1)

β

is the server utilization parameter under the convexity

structure of the M/(M +G)/2 model.

Corollary 4.2. Under the condition that α1 6= 1
β , then the stationary

number of customers in the M/(M +G)/2 queue is unique if and only if (0 <
υi < 1).

Proof. Suppose to the contrary. That means either υ1 = 1 or υ2 = 1.
Let υ1 = 1. This will occur if α1 > 1

β . That means, with a unit probability
all services are completed by server-1 ahead of server-2. This renders server-2
irrelevant to the stability of the system. Putting υ1 = 1 in (5) one obtains the
stationary customer distribution for the M/M/1 queue. Hence, the stationary
customer distribution is not unique when υ1 = 1. Similarly υ1 = 0 leads to the
distribution of the M/G/1. Now, suppose (0 < υ1 < 1). Then with positive
probability, certain services are completed by server-1 ahead of server and the
converse holds. Thus (1 − υ1) > 0. This proves the uniqueness. To show the
’only if’ part, suppose that the customer distribution of the M/(M + G)/2
queue is unique. Then the two serial servers are necessary for the stability of
the system. Consequently, (0 < υ1 < 1) and (0 < υ2 > 1).

Corollary 4.3. A stronger stability condition for theM/(M+G)/2 model

is that the joint servers occupation rate ρ1 = λ
υ1α1+υ2α2

where υ1 and υ2 are

non-zero probabilities.11

Proof. This is trivial in view of Corollary 4.1.

Lemma 4.4. Denote by E[N ] the expected number of customers in an

11Strictly greater than zero and less than one.
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M/(M +G)/2 queuing system. Then

E[N ] =
ρ̄

1− ρ̄
. (6)

Proof. The lemma follows directly from the definition of E[N] upon further
simplification12.

5. Numerical Analysis

In this section we carry a numerical analysis on the stationary performance of
the M/(M + G)/2 queuing model compared with that of two queuing models
namely; the FCFS M/M/1 and the parallel server M/M,G/2 when the FCFS
is slightly violated owing to heterogeneity of servers. We let λ to vary from
5.0 to 7.9, υ1α1 = 8.4 and (1−υ1)

β = 7.5 in the first comparison13 and λ varies
from 15.11 to 15.81 in the second comparison. The approximate values for ρ
(server-1), ρ1 (joint servers), the stationary mean number of customers E(N)
and the stationary mean waiting time E[W ] are given14 below.

Table-1a: Mean queue Length Distributions E[N ]

λ ρ ρ1 E(N)M/(M+G)/2 E(N)M/M/1 E(W )M/(M+G)/2 E(W )M/M/1

5.0 0.5952 0.3144 0.4586 2.2920 0.0912 0.45840
6.0 0.7143 0.3774 0.6062 3.7500 0.1010 0.62500
7.0 0.8333 0.4403 0.7867 7.8750 0.1124 1.12500
7.2 0.8571 0.4528 0.8275 9.9000 0.1149 1.37500
7.5 0.8929 0.4717 0.8929 15.9380 0.1191 2.12507
7.7 0.9167 0.44843 0.9385 26.6292 0.1219 3.45834
7.9 0.9405 0.4969 0.9877 157.0125 0.1250 19.87500

12The expected waiting time could be obtained by the application of the well known Little’s
theorem.

13Here, υ1 = 0.51, α1 = 16.5. Similarly, 1
β
= 15.3.

14Including the customer on service and his service time.
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Table-1b: Stationary Mean Queue length E[N ] and Mean Waiting
Time E[W]

λ ρ ρ1 E(N)M/M,G/2 E(N)M/(M+G)/2 E(W )M/M,G/2 E(W )M/(M+G)/2

15.11 1.7988 0.9503 19.94759 19.1263 1.32016 1.2658
15.21 1.8107 0.9566 23.21469 22.0434 1.52628 1.4492
15.31 1.8226 0.9629 27.41001 25.9542 1.79033 1.6952
15.41 1.8345 0.9692 33.15323 31.4676 2.15141 2.0420
15.51 1.8464 0.9755 41.68074 39.8163 2.68735 2.5671
15.61 1.8583 0.9818 55.91762 53.9451 3.58217 3.4558
15.71 1.8702 0.9881 84.92960 83.0336 5.40609 5.2854
15.81 1.8821 0.9943 178.04913 174.4386 11.26180 11.0334

6. Discussions and Scope

Tables 1a and 1b provide summaries of the stationary mean performance of the
M/(M + G)/2 queuing model compared with that of the FCFS-M/M/1 and
the M/M,G/2 models respectively. With reference to these tables, it can be
seen that:

1. Both E(N)M/(M+G)/2 and E(W )M/(M+G)/2 are significantly lower than
those of the FCFS-M/M/1 queue. Most importantly, the disparity be-
tween the means increases with increase in the arrival rate of customers
in the system. As can be seen from table 1a, as the arrival rate λ in-
creases from 5 to 7.9, both E(N)M/(M+G)/2 and E(W )M/(M+G)/2 values
are strictly lower than E(N)M/M/1 and E(W )M/M/1 respectively. Sim-
ilarly, when the server-1 occupation rate ρ → 1, the mean values for
E(N)M/(M+G)/2 and E(W )M/(M+G)/2 are stationary in contrast with that
of the FCFS-M/M/1 model that shows large deviations. Thus, the mean
performance of the serial service M/(M +G)/2 model is higher than that
of the FCFS-M/M/1 model under similar service conditions and assump-
tions.

2. On the other hand, when the M/(M + G)/2 model is compared with
the slightly violated FCFS M/M,G/2 model, it appears there is a differ-
ence in performance between the means of the two models however not
significant15. In fact, one can see that when there is no possibility of
completing a service by both servers at the same time the serial service
model performs better than the parallel server M/M,G/2. As can be seen
from table 1b, when λ ≥ 15.6, both E(N)M/(M+G)/2 and E(W )M/(M+G)/2

15Relatively, when compared with the difference between the model and the earlier model
compared.
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are relatively lower than E(W )M/M,G/2 and E(W )M/M,G/2 respectively.
Hence, one can conclude that, the serial service process with varying ser-
vice rates16 is a better alternative to the parallel service process dominant
in the literature. From the numerical results above, one can conclude that

Lemma 6.1. For a given arrival rate, the following in-equalities hold

1. E(N)M/(M+G)/2 < E(N)M/M/1,

2. E(W )M/(M+G)/2 < E(W )M/M/1.

Proof. For λ > 0, 1 ⇒ 2 directly. Table-1a shows the relationship between
the expected values E(N)M/(M+G)/2, E(N)M/M/1 and the arrival rate λ. It can
be seen that the E(N)M/(M+G)/2 values are strictly less than E(N)M/M/1. Thus,
E(N)M/(M+G)/2 is smaller than E(N)M/M/1. Hence, 1 holds. By extension, 2
holds.

Lemma 6.2. For λ > 0 :

1. E(N)M/(M+G)/2 < E(N)M/M,G/2,

2. E(W )M/(M+G)/2 < E(W )M/M,G/2.

Proof. Table-1b shows the stationary values of E(N)M/(M+G)/2 and
E(N)M/M,G/2 for certain values of the arrival rate λ. It can be seen that a
difference exists between the mean values simulated. Thus E(N)M/M,G/2 <
E(N)M/(M+G)/2. By extension, 2 holds.

There is a scope in providing an in-depth analysis on the asymptotics of
the waiting time of the queuing model under the service process in question.
This will define a maximum bound under which the arrival rate λ relates to
the service rate α1 of the most reliable server. Similarly, it will be interesting
to provide analysis for the stationary behavior of this model via the Lindley’s
integral equation.

We are grateful to all the literature sources used in this work and to the
anonymous reviewers.

16Though, with relatively close means.
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