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Abstract: In this paper, we investigate error analysis of splitting positive
definite mixed finite element methods for optimal control problems with an
control constraints. The finite element methods are discretized by the Raviart-
Thomas mixed space and the control variable is approximated by piecewise
polynomials. Finally we derive error analysis for both the control variable and
the state variables, when the control is discretized by piecewise linear continuous
functions and illustrate with a numerical example to confirm our theoretical
results.
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1. Introduction

Optimal control problems are playing an increasingly important role in science
and engineering. In many optimal control problems, the objective functional
contains not only the primal state variable but also its gradient. The advantage
of mixed element methods is that the approximations to u and the flux ppp can
be obtained simultaneously. Many researchers have made various contributions
to the mixed finite element methods and adaptive finite element method for
optimal control problems found in [2, 3, 4, 5, 8, 11, 12]. The advantage of this
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method is that the approximations to the unknown variable and its flux can
be obtained simultaneously. There are some research articles on mixed finite
element methods for optimal control problems [9, 10, 15, 17, 19]. However, the
technique of the classical mixed finite element methods leads to some saddle
point problems which are difficult to solve numerically because of losing pos-
itive definite properties. Moreover it usually needs to solve a coupled system
of equations which brings in difficulties to some extent. Thus the popular pre-
conditioned conjugate gradient solvers cannot be used for the solution of linear
algebraic systems.

Recently, Guo in [13], the author has established a new mixed finite element
method to solve the second-order hyperbolic and pseudo-hyperbolic integro-
differential equations, in which the mixed element system is symmetric positive
definite without requiring the Ladyzhenskaya-Babuska-Brezzi consistency con-
dition. Guo et al. in [14], the author has discussed two novel mixed finite
elements for parabolic integro-differential equations which can be split into two
independent symmetric positive definite subschemes and do not need to solve
a coupled system of equations without requiring the Ladyzhenskaya-Babuska-
Brezzi consistency condition. Further convergence analysis, shows that both
L2(Ω)- norm error estimate for u and optimal H(div; Ω)- norm error estimate
for σ. Liu et al. in [18], the author has used splitting positive definite mixed
finite element methods for a class of second-order pseudo-hyperbolic equations.
Error estimates are derived for both semi-discrete and fully discrete schemes
are proved.

Yang in [22], the author has studied a miscible displacement of one com-
pressible fluid by another in a porous medium governed by a nonlinear parabolic
system. A new mixed finite element method in which the mixed element system
is symmetric positive definite and the flux equation is separated from pressure
equation is used to solve the pressure equation of parabolic type and a standard
Galerkin method is used to treat the convection-diffusion equation of concen-
tration of one of the fluids. The convergence of the approximate solution with
an optimal accuracy in L2-norm is proved. Zhang et al. in [23], the author
has established a new mixed finite element procedure in which the mixed ele-
ment system is symmetric positive definite to solve the second-order hyperbolic
equations. Error estimates and convergence of the mixed element methods
with continuous-time and discrete-time scheme are proved. Wang et al. in [21],
the author has presented a splitting positive definite mixed finite element pro-
cedure to solve the second-order hyperbolic equation and further analyzed the
superconvergence property of the mixed element methods with discrete-time ap-
proximation for the hyperbolic equation. In this work, we develop a priori error



OPTIMIZATION OF SPLITTING POSITIVE... 113

analysis of splitting positive definite mixed finite element methods for quadratic
optimal control problems governed by elliptic partial differential equations. Our
resulting procedure for the control constraint consists of splitting positive sym-
metric definite matrix for whole domain by mixed finite element methods seen
new and then we use piecewise linear polynomial functions to approximate the
control variable by preconditioning projection gradient method respectively.

In this paper, we study splitting positive definite system mixed finite ele-
ment methods for optimal control problems governed by elliptic partial differ-
ential equations:

minimize
u∈K⊂L2(Ω)

{1

2

(

‖p− pd‖
2 + ‖y − yd‖

2 + α‖u‖2
)}

, (1.1)

divp = f + u, x ∈ Ω, (1.2)

p = −A∇y, x ∈ Ω, (1.3)

y = 0, x ∈ ∂Ω, (1.4)

where Ω ∈ R
2 is a bounded open set with the boundary ∂Ω, α > 0, pd ∈

(H1(Ω))2 and yd ∈ L2(Ω). Here K denotes the admissible set of the control
variable defined by

K =
{

u ∈ L2(Ω) :

∫

Ω
u ≥ 0

}

. (1.5)

Throughout this paper, for the splitting positive definite mixed finite ele-
ment methods for optimal control problems, it is proved that these approxima-
tions have convergence order O(hk+1). In Section 2, we formulate the splitting
positive definite mixed finite element methods approximation for optimal con-
trol problems. In Section 3, existence of the control variables are stated. Then
we study a priori error analysis for the state, costate and control variables
in Section 4. Finally we illustrate with a numerical example to confirm our
theoretical results in Section 5.

2. Notations and Preliminaries

The following notation will be used throughout the article:

Th = a regular simplicial triangulations of Ω

T = a triangle of Th

ρ(T ) = diameter of the set T

σ(T ) = diameter of the largest ball contained in T

h = max{ρ(T ) : T ∈ Th}.
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Define the inner products:

(y, v) =

∫

Ω
yvdx, ∀y, v ∈ L2(Ω), (2.1)

(p, v) =
2

∑

i=1

(pi, vi), ∀p, v ∈ (L2(Ω))2. (2.2)

Furthermore, [1] For 1 ≤ p ≤ ∞ and m any nonnegative integer, we consider
three vector spaces on which ‖ · ‖m,p is a norm:

(a) Hm,p(Ω) ≡ the completion of {φ ∈ C
m(Ω) : ‖φ‖m,p < ∞} with respect to

the norm ‖ · ‖m,p.

(b) Wm,p(Ω) ≡ {φ ∈ Lp(Ω) : Dαφ ∈ Lp(Ω) for 0 ≤ |α| ≤ m}, where Dαφ is
the weak partial derivative of φ, then sobolev norm is given by

‖φ‖m,p =
(

∑

0≤|α|≤m

‖Dαφ‖pLp(Ω)

)1/p
, ‖φ‖m,p = max

0≤|α|≤m
‖Dαφ‖∞

and the semi-norm | · |m,p given by

|φ|pm,p =
∑

|α|=m

‖Dαφ‖pLp(Ω).

We set Wm,p
0 (Ω) = {φ ∈ Wm,p(Ω) : φ |∂Ω= 0}. For any m, we have the obvious

chain of imbeddings

W
m,p
0 (Ω) → Wm,p(Ω) → Lp(Ω).

For p = 2, we denote Hm,p(Ω) = Wm,2(Ω), Hm,p
0 (Ω) = W

m,2
0 (Ω), ‖.‖m = ‖.‖m,2

and ‖.‖ = ‖.‖0,2.

(d) We assume that A(x) = (aij(x))2×2 is a bounded symmetric and positive
definite matrix with aij(x) ∈ C

∞(Ω) and, for any vector ξ ∈ R
2, there is

a constant C>0 such that ξTAξ ≥ C‖ξ‖2
R2 .

(e) C = C(x) is positive definite and bounded, that is, there exist positive
constants C1 and C2 such that 0 < C1 ≤ C ≤ C2.

Define a weak formulation of the problem (1.1)-(1.4). Let

V = H(div; Ω) = {v ∈ (L2(Ω))2,divv ∈ L2(Ω)}.
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The Hilbert space V is equipped with the following norm given by

‖v‖H(div;Ω) = (‖v‖2 + ‖divv‖2)1/2 and W = L2(Ω).

In order to consider splitting positive definite mixed finite element approxi-
mation of the elliptic optimal control problem (1.1)-(1.4), we find (p, y, u) ∈
V ×W ×K such that

minimize
u∈K⊂L2(Ω)

{1

2

(

‖p− pd‖
2 + ‖y − yd‖

2 + α‖u‖2
)}

(2.3)

subject to

(A−1p, v)− (y,divv) = 0,∀v ∈ V, (2.4)

(divp,w) = (f,w) + (u,w),∀w ∈ W. (2.5)

From (2.4) and the boundary conditions, we have

(A−1p, v) = (y,divv),∀v ∈ V.

To derive a symmetric and positive definite weak formulation for problem (1.1)-
(1.4), taking w = divτ , ∀τ ∈ V in (2.5), we derive an equivalent mixed varia-
tional form

minimize
u∈K⊂L2(Ω)

{1

2

(

‖p− pd‖
2 + ‖y − yd‖

2 + α‖u‖2
)}

, (2.6)

(y, v) + (divp, v) = (f, v) + (u, v),∀v ∈ V, (2.7)

(divp,divτ) = (f,divτ) + (u,divτ),∀τ ∈ W. (2.8)

It is well known that the optimal control problem (2.6)-(2.8) has a unique
solution (p, y, u) and that a triple (p, y, u) is the solution if and only if there
is a costate (q, z) ∈ V × W such that (p, y, q, z, u) for all v ∈ W , τ ∈ V and
u ∈ K ⊂ L2(Ω) satisfies the following optimality conditions [16]:

(y, v) + (divp, v) = (f, v) + (u, v), (2.9)

(divp,divτ) = (f,divτ) + (u,divτ), (2.10)

(A−1z, v) = −(y − yd, v), (2.11)

(divq,divτ) = −(p− pd, τ)− (divτ, z), (2.12)

(αu+ z − divq, u− u∗)K ≥ 0. (2.13)

Let Thp
and Thy

be two families of finite element partitions of the domains Ω
which are identical or not. Let hp and hy be mesh parameters respectively.
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Based on Thp
and Thy

, we construct the finite element spaces Vh ⊂ V and
Wh ⊂ W with the following approximation properties:

inf
vh∈Vh

‖v − vh‖ ≤ Chk+1
p ‖v‖(Hk+1(Ω))2 , (2.14)

inf
vh∈Vh

‖div(v − vh)‖ ≤ Chk1p ‖v‖(Hk1+1(Ω))2 , (2.15)

inf
wh∈Wh

‖w − wh‖ ≤ Chk+1
y ‖w‖Hk+1(Ω), (2.16)

for ∀v ∈ V ∩ (Hk+1(Ω))2, w ∈ W ∩Hk+1(Ω). It is clear that we have k1 = k

at least and k1 = k + 1. Let Vh be selected as the Raviart-Thomas mixed
finite element space of index k [20]. We define another finite element space
Wh ⊂ W = L2(Ω) consisting of piecewise polynomials of order k = 1 on each
elements of Th. Let Pk denote the space of polynomials of total degree at most
k in x1 and x2 variables respectively, where X= (x1, x2)

V = Pk(T )⊕ span(XPk(T )), W (T ) = Pk(T ).

Then we define the finite dimensional spaces as follows:

Vh(T ) := {vh ∈ V : ∀ T ∈ Th, vh |T ∈ V (T )},

Wh(T ) := {wh ∈ W : ∀ T ∈ Th, wh |T ∈ W (T )},

Kh(T ) := {uh ∈ K : ∀ T ∈ Th, uh |T ∈ W (T )}.

Let Kh be a closed convex set in Wh,

where Kh =
{

uh ∈ L2(Ω) :

∫

Ω
uh ≥ 0

}

. (2.17)

Then the corresponding discrete splitting positive definite mixed finite element
approximation of optimal control problem which will be labeled as (OCP )h is
defined as follows for all vh ∈ Wh and τh ∈ Vh:

minimize
u∈K

{1

2

(

‖ph − pd‖
2 + ‖yh − yd‖

2 + α‖uh‖
2
)}

(2.18)

(yh, vh) + (divph, vh) = (f, vh) + (u, vh), (2.19)

(divph,divτh) = (f,divτh) + (uh,divτh). (2.20)

It is well known that the optimal control problem (2.18)-(2.20) again has a
unique solution (yh, ph, uh) and that a triplet (yh, ph, uh) is the solution of
(2.18)-(2.20), if there is a costate (zh, qh) ∈ V ×W such that (yh, ph, qh, zh, uh)
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for all vh ∈ Wh, τh ∈ Vh and uh ∈ Kh ⊂ L2(Ω) satisfies the following optimality
conditions:

(yh, vh) + (divph, vh) = (f, vh) + (u, vh), (2.21)

(divph,divτh) = (f,divτh) + (uh,divτh), (2.22)

(A−1zh, vh) = −(yh − yd, vh), (2.23)

(divqh,divτh) = −(ph − pd, τh)− (divτh, zh), (2.24)

(αuh + zh − divqh, uh − u∗h)K ≥ 0. (2.25)

3. Existence of Control Variables

In this section, the following two lemmas present the solutions of the control
variables for variational inequalities in (2.9)-(2.13) and (2.21)-(2.25) which are
very important for the error analysis and the numerical algorithm construction
later.

The regularity of the optimal control for a constrained problem is quite low,
say only in H1(Ω). For example, in our priori work, we have considered the
obstacle type constraint set: K = {u : a ≤ u ≤ b}, where a and b are real
numbers.

Remark 3.1. (see [16]) Inequality (2.13) is equivalent to the following:











αu+ z − divq > 0, u = a,

αu+ z − divq < 0, u = b,

αu+ z − divq = 0, a < u < b.

For optimal control problem with this constraint set, we have the following
relationship between the control variable u and the costate variable z. For
pointwise projection operator PKz from K to Kh, then

PKz(x, t) = max(a,min(b, z(x, t) + divq)).

Then, the optimality condition (2.13) can be expressed as

u = PK

( z

α
+

divq

α

)

.

Thus the gradient of u jumps along the boundary of the zero-set of z, whose
location is generally unknown. Due to the special structure of our control
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constraint set K is defined in (1.5). We are able to show that the optimal
control problem (2.9)-(2.12) can be infinitely smooth if the initial data are so.

Lemma 3.1. Let (p, y, q, z, u) ∈ (V ×W )2 ×K be the solution of (2.9)−
(2.12). Assume that the data functions f, yd, pd and the domain Ω are infinitely

smooth. Then the control function u ∈ C∞ ¯(Ω).

Proof. By applying the assumption on f and the regularity argument of
elliptic problems, it is clear that y ∈ H2(Ω) so that p ∈ H1(Ω). It follows, from
the costate equation and the assumption on yd, pd, that we obtain z ∈ H2(Ω).
Using the relationship between the control and the costate u = max(0, z̄

α ) −
z
α + divq

α , u ∈ H2(Ω). Thus y ∈ H4(Ω), p ∈ H3(Ω). By repeating the above
process, we can conclude that u ∈ C∞ ¯(Ω).

Remark 3.2. If Ω is a convex open domain with a Lipschitz boundary
∂Ω and yd ∈ L2(Ω), pd ∈ (H1(Ω))2, then we have u ∈ H2(Ω).

Now we derive error estimates for splitting positive definite mixed finite
element methods for optimal control problems governed by elliptic equations
with the control approximated by piecewise polynomial element of k=1. We
introduce some intermediate variables (ph(u

∗), yh(u
∗), qh(u

∗), zh(u
∗)) ∈ (Vh ×

Wh)
2 for all vh ∈ Wh and τh ∈ Vh associated with the optimal control problems

u∗ as follows:

(yh(u
∗), vh) + (divph(u

∗), vh) = (f, vh) + (u∗, vh), (3.1)

(divph(u
∗),divτh) = (f,divτh) + (u∗,divτh), (3.2)

(A−1zh(u
∗), vh) = −(yh(u

∗)− yd, vh), (3.3)

(divqh(u
∗),divτh) = −(ph(u

∗)− pd, τh)− (divvh(u
∗), zh). (3.4)

For given control u∗, it is not difficult to verify that problems (3.1)-(3.4) admit
unique solutions. Then, some interpolation or projection estimates are prepared
without proof.

First, we define the standard L2(Ω)-projection [6] Ph : W → Wh, for any
w ∈ W , satisfying:

(w − Phw,wh) = 0, ∀wh ∈ Wh, (3.5)

Next we recall the Fortin projection [7] Πh : V → Vh which satisfies, for any
q ∈ V ,

(div(q −Πhq), wh) = 0, ∀ wh ∈ Wh, q ∈ V, (3.6)
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that is, div◦Πh = Ph ◦div : V
onto
−→ Wh and div(I−Πh)V ⊥ Wh where I denotes

the identity matrix, k = 0, 1,

‖w − Phw‖ ≤ Chk+1|w|,∀w ∈ H1(Ω), (3.7)

‖q −Πhq‖ ≤ Chk|q|1,∀q ∈ (H1(Ω))2, (3.8)

‖div(q −Πhq)‖ ≤ Chk|divq|,∀divq ∈ H1(Ω). (3.9)

Lemma 3.2. Let (ph, yh, qh, zh) and (ph(u), yh(u), qh(u), zh(u)) be the

solutions of (2.21)-(2.24) and (3.1)-(3.4) respectively. Then the following esti-

mates hold:

‖ph − ph(u)‖ + ‖yh − yh(u)‖ ≤ C‖u− uh‖L2(Ω), (3.10)

‖qh − qh(u)‖+ ‖zh − zh(u)‖ ≤ C‖u− uh‖L2(Ω). (3.11)

Proof. First we prove (3.10) and (3.11). It follows from (2.21)-(2.24) and
(3.1)-(3.4). We set the following intermediate errors:

r1 = ph − ph(u) and e1 = yh − yh(u),

r2 = qh − qh(u) and e2 = zh − zh(u).

Thus we have

(e1, vh) + (divr1, vh) = (u− uh, vh), (3.12)

(divr1,divτh) = (u− uh,divτh), (3.13)

(A−1e2, vh) = −(yh − yh(u), vh), (3.14)

(divr2,divτh) = −(ph − ph(u), τh(u)) − (divvh, e2). (3.15)

Note that (3.12)-(3.15) are splitting into two parts of elliptic positive defined
operator. Then using the stability property of the mixed finite space, we can
prove that

‖r1‖H(div;Ω) + ‖e1‖L2(Ω) ≤ C‖u− uh‖L2(Ω), (3.16)

‖r2‖H(div;Ω) + ‖e2‖L2(Ω) ≤ C‖u− uh‖L2(Ω). (3.17)

So we need to give the estimate for ‖u− uh‖L2(Ω).
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4. Estimates of Optimal Control Problem

In this section, we consider the error estimate of splitting positive defined mixed
finite element methods for optimal control problems.

Lemma 4.1. Let (p, y, q, z) and (ph(u), yh(u), qh(u), zh(u)) be the solu-

tions of (2.9)-(2.12) and (3.1)-(3.4) respectively. Then the following estimates

hold:

‖p − ph(u)‖H(div;Ω) + ‖y − yh(u)‖L2(Ω) ≤ C(hk+1‖p‖k+2 + hk+1‖y‖k+1),

‖q − qh(u)‖H(div;Ω) + ‖z − zh(u)‖L2(Ω) ≤ C(hk+1‖q‖k+2 + hk+1‖y‖k+1).

Proof. We define some intermediate errors for the state variables:

η1 = p− ph(u) and λ1 = y − yh(u),

η2 = q − qh(u) and λ2 = z − zh(u).

Then, from (2.9)-(2.13) and (3.1)-(3.4), vh ∈ Wh, τh ∈ Vh, we obtain the
following error equations:

(λ1, vh) + (divη1, vh) = 0, (4.1)

(divη1,divτh) = ((uh − uh),divτh), (4.2)

(A−1λ2, vh) = −(yh − yh(u), vh), (4.3)

(divη2,divτh) = −(ph − ph(u), τh(u)) − (divvh, λ2). (4.4)

Setting τh = Qhp− ph(u), vh = Rhy − yh(u) respectively, we obtain

(λ1, Rhy − yh(u)) + (divη1, Rhy − yh(u)) = 0, (4.5)

(divη1,div(Qhp− ph(u))) = 0. (4.6)

Using the Cauchy inequality and the assumption of elliptic positive definite
mixed finite element space, we obtain

‖Qhp− ph(u)‖
2
H(div;Ω)

≤ C‖p−Qhp‖
2
H(div;Ω)

+ ‖Qhp− ph(u)‖
2
H(div;Ω)

. (4.7)

By using the triangle inequality, (3.7) and Lemma (3.2), we conclude that (4.1)
is proved.

Similarly second part of Lemma (4.1) is proved easily by setting τh = Qhw−
wh(u), vh = Rhz − zh(u) respectively. We obtain

(A−1η2, Rhz − zh(u)) = −(ph − ph(u), Rhz − zh(u)), (4.8)

(divη2,divQhw − wh(u))=(yh − yh(u), Qhw − wh(u))−(divRhz−zh(u), λ2). (4.9)
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Using the Cauchy inequality, we have

‖Rhz − zh(u)‖L2(Ω) ≤ C‖z −Rhz‖L2(Ω) + C‖y − yh(u)‖L2(Ω). (4.10)

Combining intermediate operator and (4.1), by using the triangle inequality,
we conclude that (4.1) is proved.

Theorem 4.1. Let (p, y, q, z, u) and (ph(u), yh(u), qh(u), zh(u), uh) be the

solutions of (2.9)-(2.13) and (3.1)-(3.4) respectively. Then we have

‖u− uh‖L2(Ω) ≤ CMhk+1, (4.11)

‖y − yh‖L2(Ω) + ‖p− ph‖H(div;Ω) ≤ CMhk+1, (4.12)

‖z − zh‖L2(Ω) + ‖q − qh‖H(div;Ω) ≤ CMhk+1, (4.13)

where M = ‖q‖(H2(Ω))2 + ‖z‖H2(Ω) + ‖u‖H2(Ω) + ‖p‖k+2 + ‖y‖k+3.

Proof. Note that Wh ⊂ W and Kh ⊂ K. The variational inequalities (2.13)
and (2.25) imply that

(αu+ z − divq, u− uh)K ≥ 0, (αuh + zh − divqh, uh − Phu)K ≥ 0. (4.14)

Hence we deduce that

α‖u− uh‖L(Ω) = (αu, u − uh)− (αuh, u− uh)

= (αu+ z − divq, u− uh) + (αuh + zh − divqh, uh − Phu)

+(αuh + zh − divqh, Phu− u) + (z − zh, u− uh)

+(div(q − qh), u− uh) (4.15)

≤ (α(uh − u), Phu− u) + (αu+ z − divq, Phu− u)

+(z − zh(u), Phu− u) + (div(q − qh(u)), Phu− u)

+(zh(u)− zh, Phu− u) + (div(qh(u)− qh), Phu− u)

+(z − zh(u), u− uh) + (div(q − qh(u)), u − uh)

+(zh(u)− zh, u− uh) + (div(qh(u)− qh), u− uh). (4.16)

First, we find the bounds of the last two terms on the right-hand side of (4.16).
Taking v = zh − zh(u) in (4.1) and τ = qh − qh(u) in (4.2), and setting v =
yh − yh(u) in (4.3) and τ = ph − ph(u) in (4.4), we have

(zh(u)− zh, u− uh) + (div(qh(u)− qh), u− uh) = −‖yh − yh(u)‖
2
L2(Ω)

− ‖ph − ph(u)‖
2
L2(Ω) ≤ 0. (4.17)
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Moreover, if u ∈ H2(Ω), z ∈ H2(Ω) and q in (H2(Ω))2, we have

(αu + z − divq, Phu− u) = ((αu + z − divq)− Ph(αu+ z − divq), Phu− u)

≤ ‖(αu + z − divq)− Ph(αu+ z − divq)‖L2(Ω)

‖Phu− u‖L2(Ω)

≤ Chk+1(‖q‖2H2(Ω) + ‖z‖2H2(Ω) + ‖u‖2H2(Ω)). (4.18)

Therefore, by (4.16)-(4.18), projection operator properties and Cauchy-Schwartz
inequality, we obtain

α‖u− uh‖L(Ω) ≤ Chk+1(‖q‖2H2(Ω) + ‖z‖2H2(Ω) + ‖u‖2H2(Ω)) + C(‖z − zh(u)‖
2

+‖div(q − qh(u))‖
2 + ‖zh(u)− zh‖

2 + ‖div(qh(u)− qh)‖
2

+‖u− uh‖
2).

≤ Chk+1(‖q‖2H2(Ω) + ‖z‖2H2(Ω) + ‖u‖2H2(Ω))

+C(‖z − zh(u)‖
2 + ‖div(q − qh(u))‖

2 + ‖u− uh‖
2).

(4.19)

It follows easily, from Lemma (3.2) and Lemma (4.1), that

‖u− uh‖L2(Ω)≤Chk+1M. (4.20)

Moreover it follows easily from Lemma (3.2), Lemma (4.1) and (4.20), that

‖y − yh‖L2(Ω) + ‖p− ph‖H(div;Ω) + ‖z − zh‖L2(Ω) + ‖q − qh‖H(div;Ω) ≤ Chk+1M.

Thus the theorem is proved.

5. Numerical Example

We illustrate the theoretical results of the previous section with a numerical
example to solve the splitting positive definite mixed finite element methods
for optimal control problems to approximate the state and control variables, by
piecewise linear continuous function for whole domain of order k = 1.

To solve the optimal control problem numerically, we use the following
preconditioning projection gradient method for nth iteration. We now briefly
describe the computational processes to be used for solving the numerical ex-
amples in this section. For the minimization of our problem, we define the
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iterative scheme (n = 0, 1, 2, · · · )

(un+ 1
2
, vh) = (un, vh)− ρn(αun + zn − divqn, vh),

(yn, vh) + (divpn, vh) = (f, vh) + (u, vh),

(divpn,divτh) = (f,divτh) + (un,divτh),

(A−1zn, vh) = −(yn − yd, vh),

(divqn,divτh) = −(pn − pd, τh)− (divτn, zh),

un+1 = PK(uk+ 1
2
),

where ρn = 1. Now define the projection operator PK : W → K satisfying the
following bilinear form. For given w ∈ W find PKw ∈ K such that

(PKw − w,PKw − w) = min
u∈K

(u− w, u− w),

which is equivalent to

(PKw −w, v − PKw) ≥ 0 ∀v ∈ K.

Let Wn be the coordinates of wn in R
n, and DJ(un) be the gradient of J(un),

then the matrix from of the above problem reads as

Un+ 1
2
= Un − ρnM

−1
h DJ(un),

where Mh is the mass matrix of (·, ·)K , the preconditioner.

Example 5.1. Our numerical example is the following optimal control
problem for splitting positive definite mixed finite element space:

minimize
u∈K⊂L2(Ω)

{1

2

(

‖p− pd‖
2 + ‖y − yd‖

2 + α‖u‖2
)}

,

(y, v) + (divp, v) = (f, v) + (u, v),∀v ∈ V,

(divp,divτ) = (f,divτ) + (u,divτ),∀τ ∈ W,

and the admissible set is K =
{

v ∈ L2(Ω) :
∫

Ω v ≥ 0
}

. We take Ω = [0,1]×[0,1].

Then A is the identity matrix and f = 0, and the problem becomes

y(x) = sin(πx1) sin(πx2), p(x) = −A(x)∇y,

q(x) = (sin(πx1), sin(πx2)), z(x) = −π2 sin(πx1) sin(πx2).
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The source function f and the desired states yd and pd can be determined using
the above functions. Now we easily obtain

∫

Ω z = −4. From the projection
operator, we have

u = max(0, z̄)− z + divq.

Thus we have
∫

Ω u = 4 ≥ 0. Convergence plots are shown in Figure 1. Table
1 disposals the error estimate data of L2(Ω)-norm splitting positive definite
mixed finite element space are approximated the state and control variables
respectively.

h ‖u− uh‖ Rate ‖y − yh‖ Rate ‖p − ph‖ Rate ‖q − qh‖
1
16 3.012e-002 — 6.967e-003 — 3.561e-003 — 3.215e-003
1
32 8.132e-003 1.89 1.818e-003 1.93 8.912e-004 2.0 8.625e-004
1
64 2.150e-003 1.91 4.602e-004 1.98 2.382e-004 1.90 2.236e-004
1

128 5.435e-004 1.98 1.154e-004 1.99 5.817e-005 2.03 5.431e-005

Table 1: Numerical results for control and state solutions.

6. Conclusion

We have developed a priori error analysis of splitting positive definite mixed
finite element method for optimal control problems governed by elliptic partial
differential equations. Our resulting procedures for the control constraint are
splitting positive symmetric definite matrix for whole domain by mixed finite
element methods seems to be new. We have used piecewise linear polynomial
functions to approximate the control variable for RT space.

Acknowledgments

The research project was supported by the National Board for Higher Math-
ematics, Mumbai, INDIA (Grant No:2/48(5)/2011/R&D-II). This work was
partially supported by Indo-French Centre for Applied Mathematics, Depart-
ment of Mathematics, Indian Institute of Science, Bangalore, INDIA.



OPTIMIZATION OF SPLITTING POSITIVE... 125

10-310-210-1100
dofs

10-5

10-4

10-3

10-2

10-1

e
s
ti
m
a
te
s

||y−yh ||
||q−qh ||
||p−ph ||
||u−uh ||

Figure 1: Convergence plot for control and state variables.
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