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Abstract: It is a well known fact that smooth curves generated by linear
interpolating schemes produce Gibbs phenomenon or oscillations near irregu-
lar initial data points. Main aim of this article to introduce some nonlinear
subdivision scheme which is convergent, keeps all initial data points and elimi-
nates Gibbs phenomenon. We have introduced a new class of 3-point nonlinear
ternary interpolating subdivision schemes which has these properties. Numeri-
cal results are presented to support our claim.
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1. Introduction

Subdivision schemes have been widely used to generate smooth curves and sur-
faces from initial data points. Interpolating and approximating subdivision
schemes are two major categories of subdivision schemes. In interpolating sub-
division schemes, more data points are added between the initial or existing
data points at each level of subdivision. However, in approximating subdi-
vision schemes existing points are replaced by their approximations and new
points are inserted between them at each level of refinement. As a result, curves
generated by approximating schemes are smoother but do not pass through the
given initial data points especially at and near larger jumps or discontinuities.
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Figure 1: Initial control points and curve generated by 3-point
ternary interpolating subdivison scheme (5th level) in (3.1) with
w = 5

18 .

On the other hand curves generated by interpolating subdivision schemes passes
through the given initial data points but produces oscillations also known as
Gibbs Phenomenon near the points with large jumps or discontinuities. Graphic
explanation of Gibbs Phenomenon is given in Figure (1).

Gibbs phenomenon in curves, generated by interpolating subdivision schemes
is undesirable for some applications. Nonlinear subdivision Schemes like ENO,
WENO, PPH and regularization strategies ([1], [2], [3], [4], [5], [6], [9], [10]) were
introduced during last several years to address this oscillation phenomenon.
More recently, Amat et al. ([1], [2]) introduced PPH 4-points binary and ternary
nonlinear interpolating subdivision schemes. Arithmetic mean of second differ-
ences was replaced by their harmonic mean in linear subdivision scheme to
change it to nonlinear scheme. Our ternary nonlinear interpolating schemes
are inspired by the approach presented in ([1], [2]) but different in three ways.
First, we used geometric mean instead of harmonic mean, second, our schemes
are odd points ternary instead of even points and third, we used first differences
instead of second differences.

For better understanding of this article, we have arranged the material in
following fashion. In Section 2, preliminary concepts and their properties along
with some basic terminology are discussed, in Section 3, nonlinear interpolat-
ing subdivision schemes are introduced. The convergence of these schemes is
analyzed in Section 4 and some numerical results are presented in Section 5.
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2. Preliminaries

A general form of (2n − 1)-points linear univariate ternary subdivision
scheme S which maps set of data points fk = {fk

i }i∈Z into the next refine-
ment level of data points fk+1 = {fk+1

i }i∈Z is defined as

fk+1
3i−1 =

n−1
∑

j=−(n−1)

ajf
k
i+j,

fk+1
3i =

n−1
∑

j=−(n−1)

bjf
k
i+j,

fk+1
3i+1 =

n−1
∑

j=−(n−1)

a−jf
k
i+j.

(2.1)

Above equation can also be expressed as fk+1 = Sfk. A necessary condition
for the uniform convergence of ternary subdivision scheme (2.1) given by [8] is

n−1
∑

j=−(n−1)

aj =
n−1
∑

j=−(n−1)

bj =
n−1
∑

j=−(n−1)

a−j = 1. (2.2)

By defining bj as

bj =

{

1 for j = 0,
0 for j 6= 0,

(2.3)

then equation (2.1) becomes

fk+1
3i−1 =

n−1
∑

j=−(n−1)

ajf
k
i+j,

fk+1
3i = fk

i ,

fk+1
3i+1 =

n−1
∑

j=−(n−1)

a−jf
k
i+j.

(2.4)

Subdivision scheme given in equation (2.4) is called interpolating subdivision
scheme.

For (x, y) ∈ R2, we define a nonlinear function called Modified Geometric
Mean or MGM as

MGM(x, y) =

{

sign(x)
√
xy if xy > 0,
0 if xy ≤ 0,

(2.5)
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where sign(x) = 1 if x ≥ 0 and sign(x) = 0 if x < 0. Nonlinear function MGM
defined above has several interesting properties like,

MGM(x, y) = MGM(y, x), (2.6)

MGM(−x,−y) = −MGM(x, y), (2.7)

|MGM(x, y)| ≤ max(|x|, |y|). (2.8)

We recall PPH function (x, y) ∈ R2 defined by ([1], [2]) as

PPH(x, y) =

{

(1 + sign(xy) xy
x+y

for xy > 0,

0 if xy ≤ 0.
(2.9)

PPH function defined above also satisfy the properties in (2.6), (2.7) and (2.8).

3. 3-point Nonlinear Ternary Subdivision Schemes

We start with a well known linear 3-point ternary interpolating subdivision
scheme,

fk+1
3i−1 = wfk

i−1 + (43 − 2w)fk
i + (w − 1

3)f
k
i+1,

fk+1
3i = fk

i ,

fk+1
3i+1 = (w − 1

3)f
k
i−1 + (43 − 2w)fk

i + wfk
i+1.

(3.1)

Which is C1 for 2
9 < w < 1

3 as proved by Hassan etl [7]. We define dfi = fi+1−fi,
and rewrite above scheme as

fk+1
3i−1 = (2w − 1

3)f
k
i−1 + (43 − 2w)fk

i + 2(w − 1
3)(

dfk

i
+dfk

i−1

2 ),

fk+1
3i = fk

i ,

fk+1
3i+1 = (43 − 2w)fk

i + (2w − 1
3)f

k
i+1 − 2(w − 1

3)(
dfk

i
+dfk

i−1

2 ).

(3.2)

Replacing the arithmetic mean
dfk

i
+dfk

i−1

2 in the above equation (3.2) by modified
geometric meanMGM(dfk

i , df
k
i−1) as defined in (2.5), we get a class of nonlinear

3-point ternary interpolating schemes,

fk+1
3i−1 = (2w − 1

3)f
k
i−1 + (43 − 2w)fk

i + 2(w − 1
3)MGM(dfk

i , df
k
i−1),

fk+1
3i = fk

i ,

fk+1
3i+1 = (43 − 2w)fk

i + (2w − 1
3)f

k
i+1 − 2(w − 1

3)MGM(dfk
i , df

k
i−1).

(3.3)

Similarly, if we replace arithmetic mean
dfk

i
+dfk

i−1

2 in equation (3.2) by mod-
ified harmonic mean also known as PPH function, PPH(dfk

i , df
k
i−1) as defined
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in (2.9), we get another class of nonlinear 3-point ternary interpolating schemes.

fk+1
3i−1 = (2w − 1

3)f
k
i−1 + (43 − 2w)fk

i + 2(w − 1
3)PPH(dfk

i , df
k
i−1),

fk+1
3i = fk

i ,

fk+1
3i+1 = (43 − 2w)fk

i + (2w − 1
3)f

k
i+1 − 2(w − 1

3)PPH(dfk
i , df

k
i−1).

(3.4)

4. Convergence of Nonlinear subdivision schemes

Nonlinear schemes (3.3) can be expressed as

fk+1 = SNL(f
k) = S(fk) + F (dfk), (4.1)

where SNL is representing nonlinear subdivison scheme, S is linear interpolating
subdivision scheme given by

S(fk)3i−1 = (2w − 1
3)f

k
i−1 + (43 − 2w)fk

i ,

S(fk)3i = fk
i ,

S(fk)3i+1 = (43 − 2w)fk
i + (2w − 1

3)f
k
i+1

(4.2)

and F (df) is given by

F (dfk)3i−1 = 2(w − 1
3)MGM(dfk

i , df
k
i−1),

F (dfk)3i = 0,
F (dfk)3i+1 = −2(w − 1

3)MGM(dfk
i , df

k
i−1).

(4.3)

It can be easily seen by simple criterion given in [7] that subdivision scheme S

above in (4.2) is convergent and has C0 continuity for 1
6 < w < 2

3 .

To prove the convergence of nonlinear scheme SNL, we recall following result
from ([1], [2]).

Theorem 4.1. For F , S and d given in (4.1) if ∃M > 0 such that
∀g ∈ l∞(Z)

||F (g)||∞ ≤ M ||g||∞, (4.4)

and ∃c < 1 such that

||dS(f) + dF (df)||∞ ≤ c||df ||∞, (4.5)

then the subdivision scheme SNL is uniformly convergent. Moreover, if S is
Cα convergent then, for all sequence f ∈ l∞(Z), S∞

NL(f) is at least Cβ with
β = min(α,− log2(c)).
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Since ternary subdivision has three legs, so in order to prove (4.4) and (4.5)
for our nonlinear scheme, we have to consider each of them one by one. First
at n = 3i− 1,

|dS(f)3i−1 + dF (df)3i−1| = |S(f)3i − S(f)3i−1 + F (df)3i − F (df)3i−1|

= |fi − (2w − 1

3
)fi−1 − (

4

3
− 2w)fi − 2(w − 1

3
)MGM(dfi, dfi−1)|

= | − (2w − 1

3
)fi−1 + (2w − 1

3
)fi − 2(w − 1

3
)MGM(dfi, dfi−1)|

= |(2w − 1

3
)(fi − fi−1)− 2(w − 1

3
)MGM(dfi, dfi−1)|

= |(2w − 1

3
)dfi−1 + (

2

3
− 2w)MGM(dfi, dfi−1)|

≤ (2w − 1

3
)|dfi−1|+ (

2

3
− 2w)|MGM(dfi, dfi−1)|.

Here we restricting 1
6 < w < 1

3 to get (2w− 1
3) ≥ 0 and (23 − 2w) ≥ 0. Since

|dfi−1| ≤ max(|dfi|) and |MGM(dfi, dfi−1)| ≤ max(|dfi|), therefore, we have

|dS(f)3i−1 + dF (df)3i−1| ≤ (2w − 1

3
+

2

3
− 2w)max(|dfi|)

|dS(f)3i−1 + dF (df)3i−1| ≤
1

3
max(|dfi|). (4.6)

Next we consider n = 3i,

|dS(f)3i + dF (df)3i| = |S(f)3i+1 − S(f)3i + F (df)3i+1 − F (df)3i|

= |(4
3
− 2w)fi + (2w − 1

3
)fi+1 − fi − 2(w − 1

3
)MGM(dfi, dfi−1)|

= |(1
3
− 2w)fi + (2w − 1

3
)fi+1 − 2(w − 1

3
)MGM(dfi, dfi−1)|

= |(2w − 1

3
)dfi − 2(w − 1

3
)MGM(dfi, dfi−1)|.

Again 1
6 < w < 1

3 to get (2w − 1
3) ≥ 0 and (23 − 2w) ≥ 0 and using the facts

|dfi| ≤ max(|dfi|) and |MGM(dfi, dfi−1)| ≤ max(|dfi|), we get

|dS(f)3i + dF (df)3i| ≤
1

3
max(|dfi|). (4.7)
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At n = 3i+ 1,

|dS(f)3i+1 + dF (df)3i+1| = |S(f)3i+2 − S(f)3i+1 + F (df)3i+2 − F (df)3i+1|

=|(2w − 1

3
)fi + (

4

3
− 2w)fi+1 + 2(w − 1

3
)MGM(dfi+1, dfi)

− (
4

3
− 2w)fi − (2w − 1

3
)fi+1 + 2(w − 1

3
)MGM(dfi, dfi−1)|

=|(4w − 5

3
)fi + (

5

3
− 4w)fi+1 + 2(w − 1

3
)(MGM(dfi+1, dfi)

+MGM(dfi, dfi−1))|

=|(5
3
− 4w)dfi + 2(w − 1

3
)(MGM(dfi+1, dfi) +MGM(dfi, dfi−1))|.

For w < 1
3 ,

|dS(f)3i+1 + dF (df)3i+1|

≤ (
5

3
− 4w)|dfi|+ 2(

1

3
− w)(|MGM(dfi+1, dfi)|+ |MGM(dfi, dfi−1))|.

Since |MGM(dfi+1, dfi)| ≤ max |dfi|, so,

|dS(f)3i+1 + dF (df)3i+1| ≤ {(5
3
− 4w) + 4(

1

3
− w)}(max(|dfi|)).

This implies

|dS(f)3i+1 + dF (df)3i+1| ≤ c max(|dfi|), (4.8)

where c = 3− 8w < 1 for 1
4 < w < 1

3 .
Equations (4.6), (4.7) and (4.8) together give,

max
n

|dS(f)n + dF (df)n| ≤ c max
n

(|dfn|),

or

||dS(f) + dF (df)||∞ ≤ c||df ||∞, (4.9)

for c < 1 with 1
4 < w < 1

3 . This proves equation (4.5).
Now to prove equation (4.4), we consider F (g) at n = 3i− 1,

|F (g)3i−1| ≤ 2(
1

3
− w)max(|gi|) (4.10)

for w < 1
3 and by using property (2.8).

At n = 3i,

|F (g)3i| = 0 ≤ M max(|gi|) (4.11)
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for any M > 0 and similarly, at n = 3i+ 1,

|F (g)3i+1| ≤ 2(
1

3
− w)max(|gi|) (4.12)

for w < 1
3 and by using property (2.8).

Equations (4.10), (4.11) and (4.12) give

max
n

|F (g)n| ≤ M max
n

(|gn|),

or

||F (g)||∞ ≤ M ||g||∞, (4.13)

with M = 1
6 for 1

4 < w < 1
3 . Which proves equation (4.4) and consequently

proves that our class of nonlinear 3-point ternary interpolating subdivision
schemes SNL given in(3.3) is uniformly convergent for 1

4 < w < 1
3 . Theorem

4.1 also proves that S∞

NL is at least C0.

Since the functions PPH and MGM are nonlinear and satisfy properties
given in (2.6), (2.7) and (2.8) which we used for MGM to prove the conver-
gence of (3.3). Therefore, it can easily be verified by replacing MGM function
with PPH function in the above proof that subdivision schemes (3.4) is also
convergent.

5. Numerical Results

We picked two examples with varying number of irregularities in initial data
points. In Figure (2)(a), two smooth curves are generated from the initial con-
trol or data points, one with linear scheme (3.1) and another with a nonlinear
scheme (3.3) both with k = 5

18 . One can easily see oscillations or Gibbs phe-
nomenon near the initial points with bigger jumps for linear scheme but for
nonlinear scheme it is eliminated. Figure (2)(b) also shows two curves one with
the linear scheme (3.1) and one with nonlinear scheme (3.3) with k = 9

40 on the
same initial data points. The improvement is evident. The curves generated
from nonlinear scheme are free of Gibbs phenomenon.

The second example with more irregular data points is shown in Figure(3)
(a) and (b). The curves are generated by 3-point linear interpolating subdivision
scheme (3.1) with w = 5

18 and by nonlinear interpolating subdivision scheme
(3.3) with w = 5

18 in (3)(a) and w = 9
40 in (3)(b) respectively. For all these

curves, we used 5-levels of subdivisions. Both these examples show impressive
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Initial control points
Linear with w=5/18
Nonlinear with w=9/40

Initial control points
Linear with w=9/40
Nonlinear with w=9/40

(a) (b)

Figure 2: (a) Initial control points and the curves generated by 3-
point linear and nonlinear ternary interpolating subdivision schemes
at 5th level with k = 5

18 in (3.1)and (3.3) respectively. (b) Initial
control points and the curves generated by 3-point linear and non-
linear ternary interpolating subdivision schemes at 5th level with
k = 9

40 in (3.1)and (3.3) respectively.

Initial control points
Linear with w=5/18
Nonlinear with w=5/18

Inicial control points
Linear with w=9/40
Nonlinear with w=9/40

(a) (b)

Figure 3: (a) Comparison at 5th level of linear scheme with w = 5
18

in (3.1) is given with nonlinear scheme with w = 5
18 in (3.3). (b)

Again comparison at 5th level of linear scheme with w = 9
40 in (3.1)

is given with nonlinear scheme with w = 9
40 in (3.3).

improvement in eliminating oscillations or Gibbs phenomenon.

6. Conclusion

In this article, we introduced a class of 3-point nonlinear interpolating subdivi-
sion schemes. It is proved that our schemes are convergent. Numerical results



412 M. Aslam

are presented to show that curves generated by these schemes are free of Gibbs
phenomenon.
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