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Abstract: The iterative methods for characterization of H-matrices consider
the problem of finding a positive diagonal matrix D such that AD is strictly
diagonally dominant. In this paper we consider this property and use the Gor-
dan’s theorem of the alternative to find a linear feasibility problem which can
be solved efficiently by pivoting methods and gives us a criterion for deciding
about the H-character of a given matrix. We also describe matrix scaling prob-
lem and show that there is a matrix corresponding to any given matrix A such
that its scalability is equivalent to the H-character of A.
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1. Introduction

The class of H-matrices [4, 9] appears in numerical analysis and some applica-
tions such as the linear complementary problem [1]. So, the characterization of
H-matrices becomes a subject of some researches. Finding equivalent conditions
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of H-matrices which are of practical use is important for this characterization.
There are different ways to define an H-matrix. The most common one is based
on (row-wise) strictly diagonally dominant which is defined as follows.

Definition 1.1. A matrix X ∈ R
n×n is said to be (row-wise) strictly

diagonally dominant matrix if and only if

|xii| >
n
∑

j=1,j 6=i

|xij |, i = 1(1)n.

Now we can consider following definition for an H-matrix.

Definition 1.2. A matrix A ∈ R
n×n is said to be an H-matrix if and only

if there exists a diagonal matrix D with positive diagonal elements, such that
AD is row-wise strictly diagonally dominant.

Some iterative algorithms have been proposed based on this definition to
find out if a matrix is an H-matrix or not, [2, 3, 12]. They all try to find a
point diagonal matrix D to show that Definition 1.2 holds.

In this paper we are going to use the Gordan’s theorem of alternative [5]
to show that for a given matrix A ∈ R

n×n, being an H-matrix is equivalent to
existing a solution for a system of linear inequality. There are some efficient al-
gorithms [6] that can be used for finding the solution of a set of linear inequality
if there exists any, or confirming that the system is inconsistent.

Definition 1.2 turns to be a problem of finding an interior point of a poly-
hedron. In [11] Jin and Kalantari used the idea of matrix scaling in [10] for
finding the interior point of a polyhedron or showing that a system of linear
strict inequality has no solution. We use the similar idea and give a relation-
ship between the scalability and H- character of a matrix. Then we use the
Khachyan-Kalantari algorithm [10, 7] for finding suitable D for which AD is
strictly diagonally dominant or showing that the polyhedron corresponding to
Definition 2.1 does not have any interior point.

This paper is organized as follows. In Section 2, we introduce the linear
feasibility problem. We discuss its relation to H-matrices. We state how we
can use the existing algorithms for solving linear feasibility problem to check if
a given matrix is an H-matrix or not. In Section 3, we describe the diagonal
matrix scaling problem and a path-following algorithm for solving this problem.
We prove some results on the relationship between diagonal matrix scaling
problem and characterisation of H-matrices. Some numerical result for testing
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the new ideas are presented in Section 4. Finally, conclusion and final remarks
are given in Section 5.

2. Feasiblility and H-Matrices

In this section, we first restate the definition of an H-matrix with another
notation. Next we describe how to turn into linear feasibility problem to decide
about the H-character of a matrix.

Definition 2.1. The comparison matrix of A ∈ R
n×n is the matrix

M(A) = [mij ] with elements

mij=

{

|aii|, i = j = 1(1)n,

−|aij |, i 6= j = 1(1)n.

Definition 2.2. A matrix A ∈ R
n×n is said to be (row-wise) generalized

strictly diagonally dominant if and only if there exist positive diagonal matrix
D such that AD is strictly diagonally dominant.

Therefore a matrix A ∈ R
n×n is an H-matrix if and only if its comparison

matrix is generalized strictly diagonally dominant. That means the definition of
H-matrix is equivalent to the existence of a positive vector d such thatM(A)d >
0. Consider the following system:

M(A)d > 0,
d > 0, d ∈ R

n,
(1)

then A is an H-matrix if and only if system (1) is feasible. Feasibility of the
system (1) can be checked through finding a nonnegative nonzero solution of a
system of homogeneous linear equations. Following theorem shows this relation.

Theorem 2.3. [5] (Gordan’s theorem) Let G be a real m × n matrix,
then exactly one of the following two systems has a solution:

System 1: Gx > 0 for some x ∈ R
n

System 2: GT y = 0, y ≥ 0 for some nonzero y ∈ R
m.

By applying Gordan’s theorem to the system (1) we obtain following corol-
lary which gives the linear feasibility problem that can be used for characteri-
zation of H-matrices.
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Corollary 2.4. Let M(A) be the comparison matrix of A ∈ R
n×n, then

exactly one of the following two systems has a solution:
System 1: M(A)x > 0, x > 0 for some x ∈ R

n

System 2: M(A)Tw+ v = 0, (wT , vT ) ≥ 0 for some nonzero (wT , vT ) with
w, v ∈ R

n.

Let M(A) be the comparison matrix of A ∈ R
n×n. Consider the system

Bz = 0,
z ≥ 0, z 6= 0, z ∈ R

2n,
(2)

in which B = (M(A)T , I) and zT = (wT , vT ). Then, system (1) is feasible if
and only if system (2) is infeasible. That means A is an H-matrix if and only
if system (2) is infeasible.

For checking the feasibility of system (2) one can consider a linear pro-
gramming problem with feasible set similar to the system (2) and appropriate
objective function and then applying simplex algorithm [6] for the resulting
problem. Since the coefficient matrix in system (2) is of order n×2n, in solving
the corresponding LP, it is needed O(n2) computations in the worst case, at
each iteration of the simplex algorithm. This complexity is the same as some it-
erative methods that proposed for characterization of H-matrices [2, 12]. Those
algorithms need to update a matrix of order n×n at each iteration and therefore
the amount of computation that they need for one iteration is O(n2).

3. Diagonal Matrix Scaling

In this section we introduce the diagonal matrix scaling problem. We can
use this problem for testing the feasibility of system (2) and as a result this
gives a new criterion for characterization of H-matrices.

Following definition of positive semidefinite matrix is used for defining the
scaling problem.

Definition 3.1. A matrix Q ∈ R
n×n is called positive semidefinite if

xTQx ≥ 0 for all vectors x ∈ R
n.

Given an n × n symmetric positive semidefinite matrix Q, either find a
positive diagonal matrix X which scales Q into a doubly quasi-stochastic matrix

XQXe = e, X = diag(x1, x2, · · · , xn) > 0,
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or prove that Q is not scalable. Here e = (1, · · · , 1)T ∈ R
n.

Let x = (x1, x2, · · · , xn)T , x−1 = (1/x1, 1/x2, · · · , 1/xn)T , then this prob-
lem can be written as

Qx− x−1 = 0, x > 0. (3)

In [10] Khachyan and Kalantari proposed a path following algorithm for solv-
ing the scaling problem (3). Based on this algorithm and following theorem
Chvatal [7] suggested a procedure for solving linear programming as homoge-
neous problem.

Theorem 3.2. [7] Every symmetric positive semidefinite matrix Q has
precisely one of the following two properties:
(i) There is a diagonal matrix D such that De > 0 and (DQD)e = e,
(ii) There is a nonnegative nonzero vector x such that Qx = 0.

The Khachyan-Kalantari algorithm can be summarized as follows [10, 7].

Algorithm 1: Khachyan-Kalantari algorithm

input:
Symmetric positive semidefinite n× n matrix Q;
positive number δ, ǫ less than 1;

Set ρ = (1− 1/(1 + 4
√
n))1/2;

Set D0 = I, k = 0;
while (Dke)

TQ(Dke) ≥ ǫ‖Dke‖2 and ‖DkQDke− e‖ ≥ 3/4 do

Solve the system (I +DkQDk)r = e−DkQDke− ρkDk(e−Qe);
Set Dk+1 = ρdiag(Dk(e+ r)), k = k + 1;

if (Dke)
TQ(Dke) ≤ ǫ‖Dke‖2 then

Return the vector ‖Dke‖−1Dke;

else
D0 = Dk, k = 0;
while ‖DkQDke− e‖ ≥ δ do

Solve the system (I +DkQDk)r = e−DkQDke;
Set Dk+1 = diag(Dk(e+ r)), k = k + 1;

Return the matrix Dk

The following theorem uses Theorem 3.2 and proposes a relationship be-
tween H-matrices and scalability.
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Theorem 3.3. Let A ∈ R
n×n and B = (M(A)T , I). Then A is an

H-matrix if and only if BTB, is scalable.

Proof. Assume that A is an H-matrix. From Corollary 2.4, system (2) is
infeasible. Therefore system BTBz = 0, 0 6= z ≥ 0 has no solution, since
otherwise ‖Bz‖2 = zTBTBz = 0 which contradicts the infeasibility of system
(2). Thus it follows that the case (i) of Theorem 3.2 holds and therefore BTB
is scalable.

Conversely, if A is not an H-matrix, then system (2) is feasible. Thus the
case (ii) of Theorem 3.2 holds and therefore BTB is not scalable.

Khachyan-Kalantari’s algorithm can be used for finding positive diagonal
matrix D for which the matrix Q is scalable or concluding that the system Qx =
0, has nonnegative nonzero solution. Theorem 3.3 shows that this algorithm can
be used for finding the positive diagonal matrix for which Definition 1.2 holds.
The following theorem shows how this can be done by the help of diagonal
matrix scaling.

Theorem 3.4. Let A ∈ R
n×n and B = (M(A)T , I). Then following

conditions are equivalent:
(i) A is an H-matrix.
(ii) BTB is scalable.
(iii) There exists (wT , vT ) > 0 such that M(A)v−1 = w−1.

Proof. It follows from Theorem 3.3 that (i) implies (ii).

Let BTB be scalable, so there is positive diagonal matrix Z such that
ZBTBZ = e. Let z = diag(Z) and zT = (wT , vT ), then we have BTBz = z−1.
Since B = (M(A)T , I), it is concluded that

[

M(A)M(A)T M(A)
M(A)T I

] [

w
v

]

=

[

w−1

v−1

]

,

then we have
M(A)(M(A)Tw + v) = w−1

M(A)Tw + v = v−1.

By using M(A)Tw + v instead of v−1 in the first equality, one has

M(A)v−1 = w−1, (4)

which proves that (ii) implies (iii).
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Finally suppose that there exists (wT , vT ) > 0 such that M(A)v−1 = w−1.
It is concluded that d = v−1 is a feasible solution for system (1). So A is (row-
wise) generalized strictly diagonally dominant matrix and therefore H-matrix.
Thus (iii) implies (i).

The algorithmic implication of Theorem 3.4 is as follows. In order to find if
A is an H-matrix or non H-matrix we test if BTB, B = (M(A)T , I), is scalable
by applying the Khachyan-Kalantari diagonal matrix scaling algorithm (Algo-
rithm 1). Either the algorithm exclusively computes positive diagonal matrix
Z such that BTBZe = Z−1e is approximately satisfied which in turn implies
that A is an H-matrix, or it gives 0 6= z ≥ 0 such that Bz = 0 approximately
which implies A is not an H-matrix. In the first case, it is concluded from (4)
that such Z gives suitable d > 0 with M(A)d > 0.

From computational point of view Algorithm 1 needs to solve a linear system
at each iteration in both while loops, that means at each iteration it costs
O(n3) computations. It is not as good as O(n2) computational complexity of
the previous section.

4. Numerical Examples

In this section we present a set of examples that have been chosen from
different references. The algorithms are coded in Matlab 7.

In Section 2 it was mentioned that LP can be used as a tool for solving a
linear feasibility problem. We consider following LP for testing the feasibility
of system (2):

max eTw
s.t. M(A)w ≤ 0,

w ≥ 0.
(5)

If problem (5) has optimal solution with zero objective function it is concluded
that system (2) is infeasible, which means A is an H-matrix. Otherwise A should
be non H-matrix. For solving this LP problem we used linprog function of
Matlab with default options for all parameters except the solver that was
Simplex algorithm.

For implementing Algorithm 1, the parameters were chosen as ǫ = 10−10

and δ = 10−10. The code uses Matlab’s function pcg to solve the linear system
inside the first and second while loop of the algorithm.

Here are the examples.
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Example 4.1. Consider a class of matrices A(a12) ∈ R
5×5,

A(a12) =













−1 a12 0 0 0
0.5 −1 0 −0.6 0
0 −0.1 1 0 0.5
0 0.5 0 1 −0.5

−0.2 0.1 0.3 0 −1













,

where a12 ∈ (1, 2) [8]. For the choice of a12 = 1.146391, Algorithm 1 gave the
positive vector

dT = [1.850428243935277, 1.614133445708352, 0.502547652077170,

1.148198872568836, 0.682263895836364]

that satisfies system M(A(a12))d > 0. It is concluded that for a12 = 1.146391,
A(a12) is an H-matrix.

In [8] another choice for a12 has been made to somehow determine computa-
tionally a ”small” interval such that both cases of H- and non H-matrix happen
for A(a12). So a12 = 1.416392 was considered for this purpose. Algorithm 1
gave the vector

zT = [0.422794153595375, 0.740978072703923, 0.078442941614187,

0.444585910334816, 0.261508455798654, 0.000003086842709,

0.000003538725325, 0.000011364246659, 0.000004974657872,

0.000008371652444]

as a solution of system (2) which means that A(a12) is not H-matrix for a12 =
1.146392.

Example 4.2. The following example has been chosen from [3]:

A =





















1 0.001 0 0 0 0 0.03
0.02 1 0 0 0 0.01 0
0 0 1 0 0.1 0.03 0.01
0 0 20 1 0 0.05 0.01
0 0 0 4 1 0.03 0.02
0 0 0 0 0 1 4
0 0 0 0 0 1 1





















.
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The matrix A is not an H-matrix, since Algorithm 1 gave the vector

zT = [0.000003537315821, 0.000003570715846, 0.270927878578392,

0.026137349256237, 0.018574879401247, 0.119034914434428,

0.149606423598557, 0.000003533745122, 0.000003499985449,

0.251819104378512, 0.048162168503303, 0.008517911457066,

0.845219294111824, 0.329875489832633]

that is the solution of system (2).

The same characterizations obtained for all examples by solving the corre-
sponding linear programming problem (5) by Matlab function linprog. The
algorithm converged in 5 and 4 iterations respectively for two cases of Example
1, and 3 iterations for Example 2.

5. Conclusion

In this paper, we have discussed how H-matrices can be related to the
linear feasibility problem and found a way to characterize H-matrices by using
the available algorithms for solving this problem. We also proved that there is a
matrix corresponding to any matrix A ∈ R

n×n whose scalability is equivalent to
the H-matrix character of A. Then we applied Khachyan-Kalantari algorithm to
find either a positive vector d such that M(A)d > 0 and therefore confirm that
A is an H-matrix, or find a nonnegative nonzero vector z such that zTBTBz = 0,
(B = (M(A)T , I)), and concluding that A is not an H-matrix.
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