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Avenida Trabalhador São-Carlense

400 - Centro, São Carlos, SP, BRAZIL

Abstract: The research area of fluid mechanics is a very interest subject in many

engineering applications. First, most problems aimed at studying fluid flows experi-

mentally, and later numerical studies appeared after the mathematical modeling by the

Navier-Stokes equations arise. This paper studies the numerical solution of the Navier-

Stokes movement and continuity equations for incompressible, confined steady state

flows. We used a method based on staggered grids, the MAC (Mark and Cell) method,

applied on confined isothermal incompressible flows. But, an alternative approach

were employed for the Poisson equation in temporal advance of pressure in the orig-

inal proposal, basing on a pressure iteration approach. We performed numerical ex-

periments by using two classic problems, the backward-facing step and the lid-driven

cavity-flow and presented results for the selected applications.
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1. Introduction

The simulation of the fluid flow problems are mostly based in the usage of the Navier-

Stokes equations, which are highly non-linear, coupled to the mass conservation and
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energy equations. Together with a proper initial and boundary conditions, the Navier-

Stokes equations allow obtaining an interesting result front real applications. Unfor-

tunately, analytical solutions of these equations are only possible in a few simplified

cases.

The numeric simulation of a fluid flow can be superficially summarized in a few

steps: Given a physical problem, we use a mathematical model through the governing

equations and then perform a discretization, obtaining an approximated solution. The

main advantages of the numerical simulation are low cost of simulation, temporal

evolution analysis and the possibility of simulation using complex geometries. Many

effort were dedicated for providing sufficient conditions for the global regularity of the

Navier-Stokes equations (for details see, for example, the books [7],[2], and references

therein).

The MAC (Marker and Cell) method was proposed by Harlow and Welch [4] for

the incompressible simulations with Newtonian fluids in free surface cases, where

particles known as markers define the position of the free surface of the fluid. While

some works proposed simplified models [5], a survey on the subject can be found on

[8]. However, the lack of a free surface does not restrain its usage, being this method

one of the most used explicit formulation for the numeric solution of Navier-Stokes

equations. The regular MAC method uses a staggered grid and a Poisson equation

solution is used to the temporal advance of pressure in the problem domain.

This paper uses an alternative approach for the temporal advance of pressure, in-

stead of using a Poisson equation we use a pressure iteration [1][3]. The paper layout is

organized as follows: Section 2 shows the governing equations, the numerical formula-

tion for the MAC method, the pressure iteration approach for time advance, boundary

conditions for the simulations in experiments and stability conditions for the execution

of the simulation. Section 3 shows the results of the simulations and finally Section 4

draws conclusions on this study.

2. Governing Equations

The two-dimensional incompressible fluid flows on Newtonian fluids can be repre-

sented by the Navier-Stokes equations

∂u

∂ t
+

∂u2

∂x
+

∂uv

∂y
=−

∂ p

∂x
+ν

(
∂ 2u

∂x2
+

∂ 2u

∂y2

)

∂v

∂ t
+

∂vu

∂x
+

∂v2

∂y
=−

∂ p

∂y
+ν

(
∂ 2v

∂x2
+

∂ 2v

∂y2

) (1)

and the continuity equation
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∂u

∂x
+

∂v

∂y
= 0, (2)

where p is the pressure to the constant density (m2/s2), u and v are the component

of the fluid velocities, respectively to the directions x and y in the mapped problem

domain. Note that Eqs. (1) and (2) are represented in a cartesian system of coordinates

and ν is the cinematic viscosity (m2/s) of the Newtonian fluid. Here, we simplify the

problem by not considering the gravitational field force.

2.1. Numerical Formulation

In MAC method, the computational domain is divided in a finite set of rectangular

cells, each one with dimensions δx and δy, forming an uniform grid.

Figure 1: Computational domain of the lid-

driven cavity-flow.

Each cell is indexed by its position

(i, j) in relation with a reference cell,

usually adjacent to the origin of the co-

ordinate system. In this work, this cell

is chosen so that the origin corresponds

to its right upper corner, where the cen-

ter coordinates of each cell is given by

(i, j) = ((i−1/2)δx,( j−1/2)δy). The

corresponding cells in the interior of the

domain are numbered from 1 to Ni in di-

rection x and from 1 to N j in direction y,

where the cell positions vary depending

on the problem, as showed in Figures 1

and 2. The components of the flow ve-

locity are calculated in the horizontal and vertical faces of each cell, and the pressure

in its center, characterizing the staggered grid, as can be seen in Figure 3.

Figure 3: Cell (i, j) of MAC

method

The choice for the staggered grid instead of

a collocated grid is due to the decoupling of the

equations and the resulting generation of oscilla-

tory fields generation for the pressure for the lat-

ter.

The solution is evaluated through the advance

in time step δ t of the variables of the fluid flow,

small enough to ensure the stability conditions,

as detailed in Section 2.4. This can be achieved

in two parts.
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Figure 2: Computational domain of backward-facing step flow.

Initially, the velocity components are updated

in all cells (i, j) of the domain, except for those

specified by boundary conditions. In MAC, this

evaluation is explicit, being the advance in time

based on the solution obtained in the previous time step. The obtained velocities from

the first item does not necessary satisfy the continuity Eq. (2). In this part, the ve-

locities components are adjusted to ensure the mass conservation. Such correction is

performed by updating the pressure in each cell (i, j).

The original MAC method obtains the value of the pressure from the second part

by the solution a Poisson equation. We use an alternative which is to perform iterations

in the velocities and pressures fields at the same time, until the mass conservation

satisfies. This technique is called pressure iteration and is described next.

Initially, the velocity components u e v in each cell (i, j) are estimated by the

following finite difference equations:

u
n+1,(0)
i+1/2, j = un

i+1/2, j+δ t

(

−CONVn
i+1/2, j+

1

Re
VISCn

i+1/2, j−
pn

i+1, j−pn
i, j

δx

)

v
n+1,(0)
i, j+1/2

= vn
i, j+1/2+δ t

(

−CONVn
i, j+1/2+

1

Re
VISCn

i, j+1/2−
pn

i, j+1−pn
i, j

δy

)

,

(3)
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where the convective terms are given by

CONVn
i+1/2, j =

(uu)n
i+1, j − (uu)n

i, j

δx
+

(uv)n
i+1/2, j+1/2

− (uv)n
i+1/2, j−1/2

δy

CONVn
i, j+1/2 =

(vu)n
i+1/2, j+1/2

− (vu)n
i−1/2, j+1/2

δx
+

(vv)n
i, j+1 − (vv)n

i, j

δy

and the viscous terms by

VISCn
i+1/2, j =

un
i+3/2, j−2un

i+1/2, j+un
i−1/2, j

δx2
+

un
i+1/2, j+1

−2un
i+1/2, j+un

i−1/2, j−1

δy2

VISCn
i, j+1/2 =

vn
i+1, j+1/2

−2vn
i, j+1/2

+vn
i−1, j+1/2

δx2
+

vn
i, j+3/2

−2vn
i, j+1/2

+vn
i, j−1/2

δy2
.

The convective terms are related with the velocity components where they are

not defined in the discretization. The evaluation of such terms is performed by the

following
(uu)n

i+1, j − (uu)n
i, j

δx
=

un
i+1, ju

n
i+1, j −un

i, ju
n
i, j

δx
, (4)

considering the first convective term of the momentum equation in the x direction, and

so on. The values of un
i+1, j and un

i, j are approximated by the mean of values of u in

the neighborhood points, in which are defined in the discretization, and the values of

un
i+1, j and un

i, j are obtained by using a convective schemes.

This particular approach has a physical reason. Consider the term (uu)n
i, j . This

term represents the transport of the property u by velocity of convection u in the center

of cell (i, j). In other words, according with such product, the property u is being

transported with velocity u. This becomes clear when we consider the momentum

equation in the direction x under a non-conservative form, given by

∂u

∂ t
+u

∂u

∂x
+ v

∂u

∂y
︸ ︷︷ ︸

CONV

=−
∂ p

∂x
+

1

Re

(
∂ 2u

∂x2
+

∂ 2u

∂y2

)

.

According with the above expression, it can be seen the transport of the property

u by the convective terms along the directions x and y with velocity components u and

v, respectively.

The separation of (uu)n
i, j in form un

i, ju
n
i, j is also a way to make the finite difference

equations linear, because the product un
i, ju

n
i, j is linear with relation with un

i, j. Hirt and

Cook considered that un
i, j = un

i, j, making use of the mean of velocities in neighbor

points, but clarifying that the resulting equations will only be stable as long as the a
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sufficient viscosity be applied, i.e., the numerical results will be acceptable only for

low numbers of Reynolds. Based in those arguments, we use the CUBISTA scheme

[6] for the approximation of convective terms. Then, considering the term (uu)n
i, j , we

proceed as the follows.

Consider the term un
i, j, given by

un
i, j =

un
i+1/2, j +un

i−1/2, j

2
. (5)

• If un
i, j > 0, it is defined

uD = un
i+1/2, j uU = un

i−1/2, j uR = un
i−3/2, j

• If un
i, j < 0, it is defined

uD = un
i−1/2, j uU = un

i+1/2, j uR = un
i+3/2, j.

Note that D indicate the downstream, U the upstream and R the remote upstream.

Let û =
uU −uR

uD −uR

. Then,

un
i, j =







1
4
(7uU −3uR), se 0 < û < 3

8
1
8
(3uD +6uU −uR), se 3

8
≤ û ≤ 3

4
1
4
(3uD +uU), se 3

4
< û < 1

uU , otherwise

The evaluation of un
i+1, j is done in a similar way, including the other components of

the convective terms.
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2.2. Pressure Iteration

Once estimated the velocity components u
n+1,(0)
i+1/2, j and v

n+1,(0)
i, j+1/2

for all the cells, we have

to adjust such components by the pressure iteration, as follows.

Given an iteration k of the simulation, the dilation D
n+1,(k)
i, j in each cell (i, j) is

calculated as

D
n+1,(k)
i, j =

u
n+1,(k)
i+1/2, j −u

n+1,(k)
i−1/2, j

δx
+

v
n+1,(k)
i, j+1/2

− v
n+1,(k)
i, j−1/2

δy
.

The dilation is proportional to the mass flux in each cell, so if the dilation is null

in all cells, the Continuity Equation (Eq. (2)), in which the second term of the above

equation represents its discretization under finite differences, is satisfied in all the do-

main and the flow is incompressible. In order to verify that, consider the maximum

dilation obtained in the domain, and if

max
i, j

∣
∣
∣D

n+1,(k)
i, j

∣
∣
∣≥ ε ,

where ε is a defined precision, the flow must not be considered incompressible and

adjusts are necessary. Usually, ε = σ1/N, where N is the number of cells in the com-

putational domain. In this paper, it is considered σ1 = 10−7.

The aforementioned adjusts are made in the following way. First, the pressure is

updated in each cell by

p
n+1,(k+1)
i, j = p

n+1,(k)
i, j +δ p

(k)
i, j ,

where

δ p
(k)
i, j =

−β0D
n+1,(k)
i, j

2δ t
(

1
δx2 +

1
δy2

)

and p
n+1,(0)
i, j = pn

i, j. β0 is a relaxation factor, with limits 0 < β0 < 2. We used β0 = 1.

The velocity components, except for those defined in the boundary, are updated by

u
n+1,(k+1/2)
i+1/2, j = u

n+1,(k)
i+1/2, j +

δ t

δx
δ p

(k)
i, j

u
n+1,(k+1)
i−1/2, j = u

n+1,(k+1/2)
i−1/2, j −

δ t

δx
δ p

(k)
i, j

v
n+1,(k+1/2)
i, j+1/2

= v
n+1,(k)
i, j+1/2

+
δ t

δy
δ p

(k)
i, j

v
n+1,(k+1)
i, j−1/2

= v
n+1,(k+1/2)
i, j−1/2

−
δ t

δy
δ p

(k)
i, j .
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During the traversing process on the cells, the velocity components are updated

twice. Therefore, the first update refer to a component to the level (k+1/2) in above

equations, being the definitive to the (k+1).
After the pressure and velocity update, we increment k repeating the process until

max
i, j

∣
∣
∣D

n+1,(k)
i, j

∣
∣
∣< ε .

Once this condition is satisfied at (k)≡ (K), then

un+1
i+1/2, j = u

n+1,(K)
i+1/2, j vn+1

i, j+1/2
= u

n+1,(K)
i, j+1/2

pn+1
i, j = p

n+1,(K)
i, j .

Therefore, when the pressure iteration is concluded, all variables were advanced

in time, so n is incremented to the next temporal step. The process must be repeated

until the stationary state is achieved. Such condition can be verified by calculating the

residue RESn+1

RESn+1 = ∑
i

∑
j

(∣
∣
∣u

n+1
i+1/2, j −un

i+1/2, j

∣
∣
∣+
∣
∣
∣v

n+1
i, j+1/2

− vn
i, j+1/2

∣
∣
∣

)

≤ ξ ,

where ξ is the defined precision. Usually, ξ = σ2/N where N is the number of cells in

the computational domain. In this paper, we adopted σ2 = 10−5.

2.3. Boundary Conditions

Figure 4: Rigid wall

velocities.

The boundary conditions used in this paper apply to both stud-

ied cases. We used non-slip conditions for rigid walls, then the

tangential velocity in wall vt = 0. But, for the MAC method,

the tangential velocity to the wall is not defined in adjacent

points to the wall, so we consider vt |Ext = −vt |Int, where Int

and Ext are the points in the adjacent cells to the boundary, in-

ternal and external the domain, respectively, as seen in Figure

4. Then, during the calculation of the convective terms

vt |wall =
vt |Int + vt |Ext

2
= 0. (6)
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Figure 5: Inlet normal and

tangential velocity.

The wall is considered impermeable, and the ad-

jacent normal velocity is null vn|wall = 0. For moving

walls at velocity v0 or rigid slip walls where the fluid

in contact moves with the same velocity, we have vt =
v0, then we have the condition vt |Ext = 2v0 − vt |Int.

Therefore, vt |wall =
vt |Int+vt |Ext

2
= v0. The normal ve-

locity is null as in the previous case.

In the inlet of the domain, the normal and tan-

gential velocity are vn|inlet = ft and vt |inlet = gt , where

ft and gt are known, usually from the tangential di-

rection of the to the inlet, but they can also be set

constant, as in the inlet of the backward-facing step

problem.

Usually, it is considered that the fluid enters in

the normal direction to the wall, so gt ≡ 0 and we assume the Eq. (6) to the tangential

velocity. They can be seen in Figure 5.

Figure 6: Outlet normal and tan-

gential velocity.

For the outlet part of the boundary conditions,

there are many ways to set up it. But, commonly

it is assumed that there is no variation of the ve-

locity components in the normal direction to the

exit, i.e.

∂vt

∂ n̂

∣
∣
∣
∣
outlet

= 0
∂vn

∂ n̂

∣
∣
∣
∣
outlet

= 0.

Therefore, we apply the conditions

vt |Int = vt |IInt vn|outlet = vn|Int,

where the velocity is represented as in the Figure 6.

2.4. Stability Conditions

The explicit formulation of the MAC method produces some restrictions about the

value of δ t. They are described as follows.

The flow must not cross more than one cell in any direction at each time step,

resulting in

δ t1 < min

(
δx

|u|max

,
δy

|v|max

)

. (7)

This restriction is due to the fact that the convective approximations assume variations

only between adjacent cells.
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The diffusive term in the momentum equations demands that

δ t2 <
Re

2

(
1

δx2
+

1

δy2

)−1

. (8)

Hirt and Cook showed by means of linear analysis that

δ t3 <
2

Remax(|u|2max , |v|
2
max )

. (9)

Finally, δ t satisfies the restrictions (7), (8) and (9) if

δ t ≤ min
(
δ t1,δ t2,δ t3

)
.

In this paper, we update δ t at each time step by

δ t = τ min
(
δ t1,δ t2,δ t3

)
, (10)

with 0 < τ < 1, and δ t1, δ t2, δ t3 given though the Eqs.(7)-(9) converted in equals. All

simulations were executed with τ = 0.5.

3. Numeric Results

Figure 7: Lid-driven cavity-

flow problem.

In this section a numeric solution of Navier-Stokes

and continuity equations is evaluated, in confined

isotherm and incompressible flows, using the modi-

fied MAC method presented in above sections. We in-

vestigate two classic problems, the lid-driven cavity-

flow and the backward-facing step, both in transient

state.

In the lid-driven cavity-flow, a fluid that is ini-

tially in steady state with cinematic viscosity ν is re-

tained in a squared cavity of size L, filling it at maxi-

mum. Suddenly, the lid begins to move with velocity

U0, according with Figure 7. The walls are all rigid

and impermeable, but the lateral and inside ones are non-slip, and the top moving lid

non-slip, being only treated as slip where the fluid flows with velocity U0. The used

Reynolds value for this simulation is given by Re = U0L
ν .
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Figure 8: Backward-facing step problem.

In the backward-facing step problem,

a fluid with cinematic viscosity ν fills a

region of width L with a step of width

ℓ, as showed in the Figure 8. Then, the

fluid flows into inlet with a velocity U0

in a region of transversal section h. The

incompressibility forces the same quan-

tity of fluid that entries through this region

flows outside through a transversal section

H . The fluid flow inside this region is af-

fected by the step, so when it leaves the region above the step, the fluid occupies all

area of the section H , creating a recirculation zone in lateral wall proximity.

We assumed that α = ℓ/L is given by α = 1/4, and that h/H = 1/2, making the

step half of the region height, and a quarter of width. The Reynolds number for this

case is given by Re = U0h
ν .

Figure 9: Residue measure from Lid-

driven cavity-flow problem.

For the experiments, we used simu-

lations using Reynolds values 1, 10 and

100. The stationary state is obtained af-

ter 17501, 18219 e 4493 iterations, respec-

tively, where the residue falls proportion-

ally the number of iterations for the tested

Reynolds values. These results are shown

in Figure 9.

For the Backward-facing step prob-

lem, the simulations were executed using

the same values of Reynolds. In this case,

the behavior of residue is more dependant

on the Reynolds value, and values above

100 caused numerical instability. Instead

of refining the mesh in order to attenuate the instability, forcing the number of itera-

tions used without need, we reduced the τ factor in the Eq. (10) for smaller values.

Then, the stationary state is achieved after 5400, 5898 e 3447 time steps, respectively

for Reynolds Re = 1, 10 e 100. The results for this measure can be seen in the Figure

10.
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Figure 10: Residue measure from

Backward-facing step problem.

Finally, additional results obtained by

the simulations are presented. We mea-

sured the flow vector field, velocity com-

ponents u and v and the pressure rate p for

both cases simulated. The values of pres-

sure are in relation with the initial pres-

sure. For the Lid-driven cavity-flow prob-

lem, these results are presented in Figures

11 to 14, while the Figures 15 to 18 present

these results for the Backward-facing step

problem.

Results from the Lid-driven cavity-

flow problem show that the flow inside the

cavity has viscosity and inertial forces that

induce its recirculation due to the moving slip. For both simulated Reynolds values, it

can be seen the occurrence of secondary but smaller recirculation fields in the lower

corners.

Regarding the Backward-facing step problem results with Re = 10, the viscous

terms of Navier-Stokes equations have more influence than the convective ones. The

boundary layer of velocity component x has low gradient and then it become thick.

But, in the case of simulation with Re = 100, it can be noted a fluid flow less charac-

terized by the viscosity, where the recirculation can be seen from the negative values

for the velocity component y and the flow vector field plots.

Figure 11: Flow vector fields for the lid-driven cavity-flow problem.
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Figure 12: Velocity component u for the lid-driven cavity-flow problem.

Figure 13: Velocity component v for the lid-driven cavity-flow problem.

Figure 14: Pressure rate p at constant density in the lid-driven cavity-flow

problem.
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Figure 15: Flow vector fields for the Backward-facing step problem.

Figure 16: Velocity component u for the Backward-facing step problem.

Figure 17: Velocity component v for the Backward-facing step problem.

4. Conclusion

The solution of the fluid flow problems are based in the usage of the Navier-Stokes

equations, which are highly non-linear, coupled to the mass conservation and energy
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Figure 18: Pressure rate p at constant density in the Backward-facing step

problem.

equations.

The main advantages of the numerical solutions are low cost of simulation, tem-

poral evolution analysis and the possibility of simulation using complex geometries.

In this paper we studied the MAC method using an alternative approach for the

temporal advance of pressure, based in the pressure iteration. We presented the gov-

erning equations, the numeric formulation for the method and the used pressure itera-

tion procedure.

All boundary conditions were presented, focusing on the cases object of simulation

in the experiments. Numerical results were presented to verify the stability of the

method for different Reynolds values in the test cases.
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[8] S. McKee, M. Tomé, V. Ferreira, J. Cuminato, A. Castelo, F. Sousa, and N. Man-

giavacchi, The MAC method, Computers & Fluids, 37, No 8 (2008), 907–930.


