
International Journal of Applied Mathematics
————————————————————–
Volume 28 No. 5 2015, 557-565
ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)
doi: http://dx.doi.org/10.12732/ijam.v28i5.8

A NOTE ON THE EXISTENCE OF SOLITARY WAVES TO

THE REGULARIZED BENJAMIN-ONO

ZAKHAROV-KUZNETSOV (rBO-ZK) EQUATION

Fabián Sánchez Salazar1 §, Miguel Angel Pachón Higuera2

1,2Department of Mathematics
Universidad Central

Kra. 5 No. 21-38 Bogotá, D.C., COLOMBIA

Abstract: In this paper, we examine the existence of solitary waves to the
following equation

ut + a(un)x + (bH ut + uyy)x = 0,

where H is the Hilbert transform with respect to x, and a and b are real
numbers, with b > 0, via a variant of the mountain pass lemma.
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1. Introduction

In this paper we shall present an alternative proof to that presented in [4] of
the existence of solitary waves solutions to the following equation

ut + a(un)x + (bH ut + uyy)x = 0, (1.1)

where H is the Hilbert transform with respect to x, defined by
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H (f)(x, y) = p.v.
1

π

∫ ∞

−∞

f(ξ, y)

x− ξ
dξ,

when f ∈ S, and a and b are real numbers, with b > 0.
This equation is a bidimensional version of the regularized Benjamin-Ono

equation
ut + a(un)x + bH uxt = 0. (1.2)

For equation (1.1) has been shown the local well-posedness in Sobolev spaces
and the local well and ill-posedness in weighted Sobolev spaces, also it has
been proved a property of unique continuation that implies the no persistence
of solutions of this in spaces of functions with arbitrary decay polynomial (see
[3]). In [5] it is proved that when considering Sobolev spaces with negative
indices, the map data-solution for the equation (1.1) flow is not C2 and therefore
Picard’ s iteration fails for those rough Sobolev spaces. Also, there is proved a
global well-posedness result to this equation for small data and an interesting
scattering property of these global solutions.

2. Preliminaries

The proof of the existence of solitary waves solutions to (1.1) presented here uses
a variant of mountain pass lemma. In this section we provide some preliminary
results that we shall use later. Let us recall two important lemmas whose proofs
can be found in [1].

Lemma 2.1. Let s ∈ (0, n/2) and f ∈ Hs(Rn). Then, for p such that

s = n(12 −
1
p), f ∈ Lp(Rn) and

‖f‖Lp ≤ cn,s‖D
sf‖L2 ≤ cn,s‖f‖s,

where Dsf = (−∆)
s
2 = (|ξ|sf̂)∨.

Lemma 2.2. Let s1 and s2 be real numbers such that s1 < s2. Suppose

f is a tempered distribution such that Ds1f ∈ L2 and Ds2f ∈ L2. Then, for

s ∈ [s1, s2], D
sf ∈ L2 and

‖Dsf‖L2 ≤ Cs‖D
s1f‖θL2‖D

s2f‖1−θ
L2 ,

where

θ =
s2 − s

s2 − s1
.
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Lemma 2.3. If f ∈ H1(R), then

sup
x∈R

|f(x)| ≤ ‖f‖
1/2
L2(R)

‖fx‖
1/2
L2(R)

.

Proof. Let f ∈ H1(R), by the fundamental theorem of calculus and the
Cauchy Schwartz inequality, we have

f2(x) =

∫ x

−∞
2f(z)fx(z) dz ≤ C‖f‖L2‖fx‖L2 ,

hence
sup
x∈R

|f(x)| ≤ ‖f‖
1/2
L2(R)

‖fx‖
1/2
L2(R)

.

Definition 2.1. Let

X = X (R2) = {f ∈ L2(R2) | D1/2
x f ∈ L2(R2) and ∂yf ∈ L2(R2)} (2.1)

be the normed space with the norm defined by

‖f‖2X = ‖f‖2L2(R2) + ‖D1/2
x f‖2L2(R2) + ‖∂yf‖

2
L2(R2). (2.2)

It is clear that X is a Hilbert space with this norm.

As consequence of these three lemmas we have the following embedding
lemma.

Proposition 2.1. For 0 ≤ p ≤ 4, there exists a constant C, that only

depend the p, such that, for all f ∈ X ,

‖f‖p+2
Lp+2 ≤ C‖f‖

4−p

2

L2 ‖D1/2
x f‖p

L2‖∂yf‖
p

2

L2 .

In particular, if f ∈ X

‖f‖Lp+2 ≤ C‖f‖X .

Proof. First suppose that p < 4. By Lemma 2.3, the H older inequality and
the Minkowski integral inequality, we have that
∫

R2

|f(x, y)|p+2 dxdy ≤

∫ ∞

−∞
sup
y∈R

|f(x, y)|p
∫ ∞

−∞
f(x, y)2 dy dx

≤ C

∫ ∞

−∞
‖f(x, ·)‖

p/2
L2(R)

‖∂yf(x, ·)‖
p/2
L2(R)

‖f(x, ·)‖2L2(R) dx
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≤ C

∫ ∞

−∞

(∫ ∞

−∞
f(x, y)2 dy

) p+4
4

(∫ ∞

−∞
(∂yf(x, y))

2 dy

) p

4

dx

≤ C‖∂yf‖
p
2

L2

[∫ ∞

−∞

(∫ ∞

−∞
f(x, y)2 dy

) p+4
4−p

dx

] 4−p

4

≤ C‖∂yf‖
p

2

L2

[∫ ∞

−∞
‖f(·, y)‖2

L
2(p+4)
4−p

dy

] p+4
4

.

(2.3)
Now, by Lemma 2.1,

‖f(·, y)‖2

L
2(p+4)
4−p

≤ C‖D
p

p+4
x f(·, y)‖2L2 . (2.4)

On the other hand, Lemma 2.2,

‖D
p

p+4
x f(·, y)‖2L2(R) ≤ C‖f(·, y)‖

2(4−p)
p+4

L2(R)
‖D1/2

x f(·, y)‖
4p
p+4

L2(R)
. (2.5)

Then, the (2.3), (2.4), (2.5) and the H older inequality, we have

‖f‖p+2
Lp+2 ≤ C‖∂yf‖

p

2

L2‖f‖
4−p

2

L2 ‖D1/2
x f‖p

L2 . (2.6)

Now, we show the case p = 4. By Lemma 2.1, for all u ∈ H1(R) we have that

‖u‖L6 ≤ C‖D
1
12u‖L4 ≤ ‖u‖

2
3

L4‖D
1
4u‖

1
3

L4 ≤ ‖u‖
2
3

L4‖D
1
2u‖

1
3

L2 ,

then, for all f ∈ S(R2),

∫

R2

f6(x, y) dxdy ≤ C

∫ ∞

−∞

(∫ ∞

−∞
f4(x, y) dx

)(∫ ∞

−∞
(D1/2

x f)2(x, y) dx

)
dy.

On the other hand,

f4(x, y) =4

∫ y

−∞
f3(x, ỹ)fy(x, ỹ) dỹ

≤4

(∫ ∞

−∞
f6(x, ỹ) dỹ

)1/2 (∫ ∞

−∞
f2y (x, ỹ) dỹ

)1/2

,

we have

∫ ∞

−∞
f4(x, y) dx ≤ 4

(∫

R2

f6(x, ỹ) dxdỹ

)1/2 (∫

R2

f2y (x, ỹ) dxdỹ

)1/2

.
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so, ∫

R2

f6(x, y) dxdy ≤ C

(∫

R2

f6(x, y) dxdy

)1/2

‖D1/2
x f‖2‖fy‖,

it follows that ∫

R2

f6(x, y) dxdy ≤ C‖D1/2
x f‖4‖fy‖

2.

This shows this proposition.

The following two lemmas are similar to Lemmas 2.11 and 2.12 in [2] and
their proofs follow the same ideas.

Lemma 2.4. For 0 ≤ p < 4 the embedding X →֒ Lp
loc(R

2) is compact.

In other words, if {φn} is a bounded sequence in X and R > 0, there exists a

subsequence {unk
} of {un} which converges strongly to u in Lp(BR).

Lemma 2.5. If {un} is bounded in X and

lim
n→∞

sup
(x,y)∈R2

∫

B(x,y,R)
|un|

2 dxdy = 0. (2.7)

then un → 0 in Lp(R2).

Definition 2.2. Suppose E is a real Banach space and I ∈ C1(E,R). I
satisfies the Palais-Smale condition at level c, if there exists a sequence {um}
in E, such that I(um) → c and lim

m→∞
I ′(um) = 0.

Lemma 2.6. Suppose E is a Banach space and I ∈ C1(E,R) satisfies the
following properties:

1. I(0) = 0, and there exist ρ > 0 and α > 0 such that I|∂Bρ(0) ≥ α > 0.

2. There exist β ∈ E −Bρ(0) such that I(β) ≤ 0.

Let Γ be the set all paths which connects 0 and β, i.e.,

Γ = {g ∈ C([0, 1], E) | g(0) = 0, g(1) = β}

and

c = inf
g∈Γ

max
t∈[0,1]

I(g(t)).

Then c ≥ α and I possesses a Palais-Smale sequence at level c.



562 F.S. Salazar, M.A.P. Higuera

Proof. See Theorem 2.8 in [6].

3. Existence of Solitary Waves

If φ(x− ct, y) is a solitary wave solution to (1.1), then

−cφx + a(φn)x + (−cbHφx + φyy)x = 0. (3.1)

If φ ∈ X , we can write (3.1) as

−cφ+ aφn − cbHφx + φyy = 0. (3.2)

Then φ is a critical point of the functional I on X defined as

I(φ) =

∫

R2

1

2

[
cφ2 − a

φn+1

n+ 1
+ cb(D1/2

x φ)2 + (∂yφ)
2

]
dxdy. (3.3)

Therefore, in order to ensure the existence of solitary waves solutions to the
equation (1.1) it is enough prove that I have non-zero critical points in X .

Let us see that I satisfies the conditions or Lemma 2.6. It is obvious that
I is a C1 functional for 0 < p ≤ 4 and I(0) = 0. Let ψ ∈ X be such that
‖ψ‖X = 1. Then for α ∈ R we have

I(αψ) =

∫

R2

1

2

[
c(αφ)2 − a

(αψ)n+1

n+ 1
+ cb(D1/2

x (αψ))2 + (∂y(αψ))
2

]
dxdy

≥
min{c, cb, 1}

2
α2

[∫

R2

ψ2 + (D1/2
x ψ)2 + (∂yψ)

2 dxdy

]

− a
αn+1

n+ 1

∫

R2

ψn+1 dxdy

≥
min{c, cb, 1}

2
α2‖ψ‖2X − a

αn+1

n+ 1
‖ψ‖p+1

Lp+1(R2)

≥
min{c, cb, 1}

2
α2 − a

αn+1

n+ 1

= α2

[
min{c, cb, 1}

2
− a

αn−1

n+ 1

]
.

Then, taking α′ small enough, for instance

α′ <
n+1

√
(n+ 1)min{c, cb, 1}

2a
,
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we have that I|∂Bα′ (0) ≥ ρ > 0, where ρ =
[
min{c,cb,1}

2 α2 − aαn+1

n+1

]
.

Let ψ ∈ X fixed such that ‖ψ‖X = 1 y ‖ψ‖p+1
Lp+1 = c, we have that

I(αψ) =
1

2
Kα2 −

1

n+ 1
Lαn+1.

Taking α small enough, we have, I(αψ) < 0. Also α can be taken large enough
such that e := αψ ∈ E − Bα′(0). This prove the second condition of Lemma
2.6. So, we have shown the following lemma.

Lemma 3.1. Let I, α y β be defined as above and let Γ and c be defined

as in Lemma 2.6. Then, there exists a sequence {φn}, such that I(φn) → c and
I ′(φn) → 0.

Now, we can prove the following theorem.

Theorem 3.1. The equation (3.1) has nontrivial solutions in X .

Proof. It is enough to show that I have non-zero critical points in X . By
Lemma 3.1, there exists a Palais-Smale sequence {φn} at level c of I. Therefore,

c+ o(1)‖φn‖X ≥ I(φn)−
(I ′(φn), φn)X

p+ 1

=

∫

R2

1

2
(cφ2n + bc(D1/2

x φn)
2 + (∂yφn)

2)− a
φp+1
n

p+ 1
dxdy−

−
1

p+ 1

∫

R2

(cφ2n + cb(D1/2
x φn)

2 + (∂yφn)
2)− aφp+1

n dxdy

≥

(
1

2
−

1

p+ 1

)
min{c, cb, 1}‖φn‖

2
X ,

for n big enough. Hence {φn} is bounded in X . Considering that

0 < c = lim
n→∞

I(φn)−
1

2
(I ′(φn), φn)X

= lim
n→∞

(∫

R2

1

2
(cφ2n + bc(D1/2

x φn)
2 + (∂yφn)

2)− a
φp+1
n

p+ 1
dxdy−

−
1

2

∫

R2

(cφ2n + cb(D1/2
x φn)

2 + (∂yφn)
2)− aφp+1

n dxdy

)

= lim
n→∞

a(p− 1)

2(p + 1)

∫

R2

φp+2
n dxdy.
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Lemma 2.5 implies that

δ = lim sup
n→∞

sup
(x,y)∈R2

∫

(x,y)+Ω

φ2n dxdy > 0,

Then, passing to a subsequence if necessary, we can assume that there exists a
sequence (xn, yn) ∈ R

2 such that

∫

(x,y)+Ω

φ2n dxdy >
δ

2
(3.4)

for n big enough. Let φ̃n = φn(· − (xn, yn)). Then, again passing to a subse-
quence if necessary, we can assume that, for some φ ∈ X , φ̃n −→ φ in X . In
view of (3.4), for n large enough, and Lemma 2.4, φ 6= 0. Lemma 2.4 and the
continuity of the function u→ up+1, imply that

I ′(φ)(ω) = lim
n→∞

I ′(φn)(ω) = 0,

for all ω ∈ X . This shows this theorem.
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