International Journal of Applied Mathematics

Volume 28 No. 5 2015, 567-577

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi: http://dx.doi.org/10.12732/ijam.v28i5.9

POSITIVE SOLUTIONS FOR SOME NONLINEAR DELAY INTEGRAL EQUATIONS

Mohammed Said El Khannoussi¹§, Abderrahim Zertiti²

1,2Département de Mathématiques
Université Abdelmalek Essaadi
Faculté des sciences
BP 2121, Tétouan, MOROCCO

Abstract: In this work we give an extension of the results obtained in [2], we are interested in producing sufficient conditions for the existence of positive periodic solution to

$$x(t) = \int_0^{\tau(t)} h(t, s, x(t - s - l)) ds,$$

in the special case where h(t, s, x) = f(t, s, x)g(t, s, x).

For it, we use topological methods, more precisely, the fixed point index.

 $\textbf{AMS Subject Classification:} \quad 37\text{C}25,\,47\text{J}10,\,47\text{B}07$

Key Words: positives periodic solutions; fixed point index; spectral radius; nonlinear delay integral equations

1. Introduction

In their paper [2], Cañada and Zertiti have studied integral equations of type

$$x(t) = \int_0^{\tau(t)} h(t, s, x(t - s - l)) \ ds, \tag{1}$$

which formulate a model to explain the evolution of certain infectious diseases and it may also be considered as a growth equation for single species populations when the birth rate varies seasonally. It includes, as a particular case, different

Received: July 7, 2015

© 2015 Academic Publications

[§]Correspondence author

equations suggested by other authors (see [2, 4, 7, 12, 11]). For instance, Cooke and Kaplan in [4] have defined a number β (dependent on f), such that for each $\tau > \beta$ the equation

$$x(t) = \int_{t-\tau}^{t} f(s, x(s)) \ ds$$

has a positive solution of period ω . Also, in [12] Torrejon has shown the existence of nontrivial almost periodic solution of the equation

$$x(t) = \int_{t-\sigma(x(t))}^{t} f(s, x(s)) ds,$$

where f is a continuous nonnegative almost periodic function in t. And in [11], Nussbaum has shown that nontrivial ω -periodic solutions of

$$x(t) = \int_{t-\tau}^{t} P(t-s,\tau)f(s,x(s)) ds,$$

bifurcate from the trivial solution $(f(t,0) \equiv 0)$ when τ exceeds a certain threshold value τ_0 . Finally in [2], Cañada and Zertiti have given a condition (sufficient and necessary) for the existence of solution to (1).

In this work we give an extension of results obtained in [2]. We are interested in producing sufficient conditions for the existence of positive periodic solution to (1) in the special case where h(t,s,y)=f(t,s,y)g(t,s,y) under the following assumptions on functions f and g:

 $f,g:\mathbb{R}\times\mathbb{R}\times[0,+\infty[\longrightarrow\mathbb{R}$ are continuous functions with:

- (F1): f(t, s, 0) = 0 for all $(t, s) \in \mathbb{R} \times \mathbb{R}$,
- (F2) : $f(t,s,y) \ge 0, g(t,s,y) \ge 0, \forall (t,s,y) \in \mathbb{R} \times \mathbb{R} \times [0,+\infty[$ and there exists a positive number w,(w>0) such that f(t+w,s,y)=f(t,s,y) and $g(t+w,s,y)=g(t,s,y), \forall (t,s,y) \in \mathbb{R} \times \mathbb{R} \times [0,+\infty[,$
- (F3): l is a nonnegative constant and $\tau: \mathbb{R} \longrightarrow \mathbb{R}^+$ is a continuous and λ -periodic function $(\lambda > 0)$ such that $\frac{\omega}{\lambda} = \frac{p}{q}, p, q \in \mathbb{N}$.

In [4, 11], the authors assume that $\lim_{y\to +\infty}\frac{f(t,s,y)}{y}=0$ uniformly in (t,s), and in [2], they assume that there exists a continuous function $b:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ such that $\lim_{y\to +\infty}\frac{f(t,s,y)}{y}=b(t,s)$ uniformly in (t,s). In this paper we allow f to have more general asymptotic behavior at infinity (see Theorems 1 and 2 below). In Theorem 2 we suppose that $g(t,s,y)\equiv 1$ and there exist a continuous function $b:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ and $p\geq 1$ such that $\lim_{y\to +\infty}\frac{f(t,s,y)^p}{y}=b(t,s)$ uniformly in (t,s). Then we have two cases: p=1 and p>1. If p=1 we refer

to results of [2] for more details, and if p > 1 we apply Theorem 1 below, which extends the results of [2].

We finish this paper by proving several results about multiplicity of solutions, in the line of Guo and Lakshmikantham [7]. Some examples are given to illustrate our results.

2. Main Results

Denote by P the cone of nonnegative functions in the real Banach space E, of all real and continuous $q\omega$ periodic functions defined on \mathbb{R} , where if $x \in E$

$$||x|| = \max_{0 \le t \le q\omega} |x(t)|.$$

Let us consider the integral equation

$$x(t) = \int_0^{\tau(t)} f(t, s, x(t - s - l)) g(t, s, x(t - s - l)) ds.$$
 (2)

In this section we are interested in the existence of solution of (2) in $P \setminus \{0\}$. Define the operator $F: E \longrightarrow E$ by

$$Fx(t) = \int_0^{\tau(t)} f(t, s, x(t - s - l)) g(t, s, x(t - s - l)) \ ds.$$

Then equation (2) has a continuous, nonnegative, and nontrivial $q\omega$ -periodic solution iff there exists $x \in P \setminus \{0\}$ verifying

$$x = Fx$$
.

Now, we present and prove our main results.

Theorem 1. Suppose that:

(H1) there exists a continuous function $a: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$\lim_{y \to 0^+} \frac{f(t, s, y)g(t, s, y)}{y} = a(t, s), \quad \text{uniformly in } (t, s) \in \mathbb{R} \times \mathbb{R},$$

(H2) there exists a continuous function $b: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ and p > 1 such that

$$\lim_{y \to +\infty} \frac{f(t, s, y)^p}{y} = b(t, s), \quad \text{uniformly in } (t, s) \in \mathbb{R} \times \mathbb{R},$$

(H3) there exists $\mu > 0$ such that for all $x \in P$, we have

$$\int_0^{\tau(t)} g(t, s, x(t - s - l))^q ds < \mu, \quad \forall t \in \mathbb{R},$$

where q verifying $\frac{1}{p} + \frac{1}{q} = 1$

(H4)
$$\overset{\circ}{A_t} = \emptyset \quad \forall t \in \mathbb{R}, \text{ where } A_t = \{ s \in \mathbb{R} : a(t, t - s) = 0 \}.$$

Then if

$$r(L(\tau, a)) > 1$$
, and $r(L(\tau, b)) < p$, (3)

equation (2) has a solution in $P \setminus \{0\}$, where $r(L(\tau, a))$ means the spectral radius of the linear operator $L(\tau, a) : E \longrightarrow E$ defined by

$$L(\tau, a)x(t) = \int_0^{\tau(t)} a(t, s)x(t - s - l) \ ds, \quad \forall x \in E,$$

(analogously for $r(L(\tau, b))$ and $L(\tau, b)$).

Proof. We must observe that (E, P) is an ordered Banach space with $P \neq \emptyset$. Also it is not difficult to see that $F: P \to P$ is completely continuous. Moreover:

(a) We claim that there exists R > 0 such that if $x \in P$ and $t \in [0, 1]$ satisfy x = tFx, then $||x|| \le R$.

Suppose that is not true, then we can find sequences $\lambda_n \in [0,1]$ and $x_n \in P$ such that $||x_n|| \longrightarrow \infty$ and

$$x_n = \lambda_n F x_n \le F x_n$$

where the partial ordering is that induced by the cone P ($x, y \in E$ then $x \le y$ if $y - x \in P$).

By using the young inequality we get

$$Fx_n(t) = \int_0^{\tau(t)} f(t, s, x_n(t - s - l)) g(t, s, x_n(t - s - l)) ds$$

$$\leq \frac{1}{p} \int_0^{\tau(t)} f(t, s, x_n(t - s - l))^p ds +$$

$$+ \frac{1}{q} \int_0^{\tau(t)} g(t, s, x_n(t - s - l))^q ds$$

$$= \frac{1}{p} G_1 x_n(t) + \frac{1}{q} G_2 x_n(t),$$

where

$$G_1x_n(t) = \int_0^{\tau(t)} f(t, s, x_n(t-s-l))^p ds$$

and

$$G_2x_n(t) = \int_0^{\tau(t)} g(t, s, x_n(t-s-l))^q ds,$$

so that

$$\begin{aligned} \frac{x_n}{\|x_n\|} &\leq \frac{1}{p} \frac{G_1 x_n}{\|x_n\|} + \frac{1}{q} \frac{G_2 x_n}{\|x_n\|} \\ &= \frac{1}{p} \frac{G_1 x_n - L(\tau, b) x_n}{\|x_n\|} + \frac{1}{p} \frac{L(\tau, b) x_n}{\|x_n\|} + \frac{1}{q} \frac{G_2 x_n}{\|x_n\|}. \end{aligned}$$

By letting $\delta_n = \frac{x_n}{\|x_n\|}$, we get $\frac{1}{p} \frac{G_1 x_n - L(\tau, b) x_n}{\|x_n\|} + \frac{1}{p} L(\tau, b) \delta_n + \frac{1}{q} \frac{G_2 x_n}{\|x_n\|} - \delta_n \in P.$ (4)

By using the fact that $L(\tau, b)$ is a positive linear map, we obtain

$$L(\tau,b)\left(\frac{1}{p}\frac{G_1x_n - L(\tau,b)x_n}{\|x_n\|}\right) + L(\tau,b)\left(\frac{1}{p}L(\tau,b)\delta_n\right) + L(\tau,b)\left(\frac{1}{q}\frac{G_2x_n}{\|x_n\|}\right) - L(\tau,b)\delta_n \in P.$$

$$(5)$$

It is not difficult to see that [2, Theorem 2.1],

$$\lim_{\substack{\|x_n\| \to \infty \\ x_n \in P}} \frac{1}{p} \frac{G_1 x_n - L(\tau, b) x_n}{\|x_n\|} = 0,$$

And by virtue of (H3), we easily get $\frac{1}{q} \frac{G_2 x_n}{\|x_n\|} \longrightarrow 0$ as $n \longrightarrow \infty$.

On the other hand, since $L(\tau, b)$ is compact, we may as well assume that $L(\tau, b)\delta_n \to y \in P$. Then by letting $n \to \infty$ in (5) we get

$$\frac{1}{p}L(\tau,b)y - y \in P.$$

An easy induction argument shows that

$$\frac{1}{p^n}L^n(\tau,b)y - y \in P,$$

for every positive integer n. Since $r(\frac{1}{p}L(\tau,b)) < 1$ it follows that $\frac{1}{p^n}L^n(\tau,b)y \to 0$ and then $-y \in P$, which implies that y=0 since $y \in P$.

On the other hand from (4) we have

$$0 \le \delta_n \le \frac{1}{p} \frac{G_1 x_n - L(\tau, b) x_n}{\|x_n\|} + \frac{1}{p} L(\tau, b) \delta_n + \frac{1}{q} \frac{G_2 x_n}{\|x_n\|}.$$

Then, we can easily get

$$1 \le \left\| \frac{1}{p} \frac{G_1 x_n - L(\tau, b) x_n}{\|x_n\|} + \frac{1}{p} L(\tau, b) \delta_n + \frac{1}{q} \frac{G_2 x_n}{\|x_n\|} \right\|.$$

Since we have already shown that

$$\frac{1}{p}\frac{G_1x_n - L(\tau, b)x_n}{\|x_n\|} + \frac{1}{p}L(\tau, b)\delta_n + \frac{1}{q}\frac{G_2x_n}{\|x_n\|} \to 0 \quad \text{as} \quad n \to \infty$$

we have arrived at a contradiction.

(b) We shall prove the existence of $F'_{+}(0)$ the right derivative of F along P at 0.

For this, we must prove that

$$F'_{+}(0)(x)(t) = L(\tau, a)x(t), \quad \forall x \in E,$$

or what is the same

$$\lim_{\substack{x \to 0 \\ x \in P}} \frac{Fx - L(\tau, a)x}{\|x\|} = 0,$$

or equivalently

$$\forall \varepsilon \in \mathbb{R}^+, \exists r(\varepsilon) \in \mathbb{R}^+ : ||x|| \le r(\varepsilon)(x \in P) \Rightarrow \frac{||Fx - L(\tau, a)x||}{||x||} \le \varepsilon.$$

Let $\varepsilon > 0$. Then from (H1) there is $r(\varepsilon) \in \mathbb{R}^+$ such that

$$\mid f(t,s,y)g(t,s,y) - a(t,s)y \mid \leq \varepsilon \mid y \mid$$

$$\forall (t,s) \in \mathbb{R} \times \mathbb{R}, \forall y \in \mathbb{R} : 0 \le y \le r(\varepsilon).$$

Then if $x \in P$ satisfies $||x|| \le r(\varepsilon)$, we obtain

$$|Fx(t) - L(\tau, a)x(t)|$$

$$\begin{split} & \leq \int_0^{\tau(t)} \mid f(t,s,x(t-s-l))g(t,s,x(t-s-l)) \\ & - a(t,s)x(t-s-l) \mid ds \\ & \leq \int_0^{\tau(t)} \mid \varepsilon x(t-s-l) \mid ds \\ & \leq \varepsilon \tau^* \|x\|, \quad \forall t \in \mathbb{R}. \quad (\tau^* = \max_{0 \leq t \leq \lambda} \tau(t)). \end{split}$$

Consequently,

$$||Fx - L(\tau, a)x|| \le \varepsilon \tau^* ||x||, \quad \forall x \in P : ||x|| \le r(\varepsilon).$$

(c) It is easily seen (see [2, Theorem 2.1]) that $F'_{+}(0)$ is strongly positive.

Now, from (a), we obtain that $i(F, P_R) = 1$. And from (b), (c) and (3), we obtain by using Lemma 13.1 in Amann [1], that there exists r < R, r > 0 such that $i(F, P_r) = 0$ (where, for any $\rho > 0$, $P_\rho = \{x \in P : ||x|| < \rho\}$ and $i(F, P_\rho)$ means the fixed point index with respect to the cone P).

Then, (by the additivity property) $i(F, P_R \setminus \overline{P_r}) = 1 \neq 0$, which implies the existence of a solution of (2) in $P \setminus \{0\}$.

Remark 1. If we take $q(t,s,y) \equiv 1$ in the above theorem, we obtain the following result which is a generalization of Theorem 2.1 in [2].

Theorem 2. Let us suppose the following hypotheses

 (H^*1) there exists a continuous function $a: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$\lim_{y \to 0^+} \frac{f(t, s, y)}{y} = a(t, s), \text{ uniformly in } (t, s) \in \mathbb{R} \times \mathbb{R},$$

 (H^*2) there exist a continuous function $b: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ and $(p \ge 1)$ such that

$$\lim_{y \to +\infty} \frac{f(t, s, y)^p}{y} = b(t, s), \text{ uniformly in } (t, s) \in \mathbb{R} \times \mathbb{R},$$

(H*3)
$$\overset{\circ}{A}_t = \emptyset \quad \forall t \in \mathbb{R}, \text{ where } A_t = \{s \in \mathbb{R} : a(t, t - s) = 0\}.$$

Then if

$$r(L(\tau, a)) > 1$$
 and $r(L(\tau, b)) < p,$ (6)

equation (2) has a solution in $P \setminus \{0\}$.

Proof. We discuss two steps:

If p=1, we get Theorem 2.1 in [2].

If p > 1, we apply the above theorem (1) by observing that

$$\int_{0}^{\tau(t)} 1 ds < \tau^* + 1.$$

Now we present an example of Theorem 1 which cannot be derived from the results of [2].

Example 3. Let
$$h:[0,+\infty]\to\mathbb{R}^+$$
 be a continuous function verifying $h(0)=0$ $(\sqrt{h})'(0)=\alpha>0,$ $\lim_{y\to+\infty}\frac{h(y)}{y}=\beta>0$

and take $d: \mathbb{R} \to \mathbb{R}$ a continuous, positive and ω -periodic function $(\omega > 0)$ and l = 0. If for all $(t, s, y) \in \mathbb{R} \times \mathbb{R} \times [0, +\infty], f(t, s, y) = \sqrt{d(t-s)h(y)}$, and $g(t, s, y) = \begin{cases} 1 & 0 \leq y \leq 2\pi \\ 1 + s^2 \sin^2 y & y \geq 2\pi. \end{cases}$

$$g(t, s, y) = \begin{cases} 1 & 0 \le y \le 2\pi \\ 1 + s^2 \sin^2 y & y \ge 2\pi. \end{cases}$$

Then by observing that $\int_0^{\tau(t)} g(t,s,x(t-s-l))^2 ds < \tau^* + \frac{2\tau^{*3}}{3} + \frac{\tau^{*5}}{5} + 1$, hypotheses (H1)-(H4) of Theorem 1 are satisfied with $p=2,q=2,\ a(t,s)=\alpha\sqrt{d(t-s)}$, and $b(t,s)=\beta d(t-s)$.

Consequently, if

$$1 < r(L(\tau, a)), \quad r(L(\tau, b)) < 2,$$
 (7)

equation (2) has a solution in $P \setminus \{0\}$.

Note that in the particular case where $d(t) \equiv d \in \mathbb{R}^+$ conditions (7) are satisfied if we take

$$\frac{1}{\alpha\sqrt{d}} < \min_{t \in \mathbb{R}} \tau(t) \le \max_{t \in \mathbb{R}} \tau(t) < \frac{2}{\beta d}.$$

Here we use that fact that

$$\min_{t \in \mathbb{R}} \int_0^{\tau(t)} a(t, s) ds \le r(L(\tau, a)), \quad r(L(\tau, b)) \le \max_{t \in \mathbb{R}} \int_0^{\tau(t)} b(t, s) ds,$$

(see [11]).

3. Multiplicity of Solutions

In this section, we present several results about multiplicity of solutions, which generalize some previous ones by Guo and Lakshmikantham [7], and [2]. An example is given to illustrate the obtained generalizations.

Theorem 4. Let f and g satisfy (H1),(H2), and (H3) of Theorem (1) and

$$(H5) \ r(L(\tau,a)) < 1 \quad \text{ and } \quad r(L(\tau,b)) < p \quad (p > 1),$$

(H6) There exist r, R, 0 < r < R such that

$$r < \int_0^{\tau(t)} f(t, s, x(t-s-l)) g(t, s, x(t-s-l)) \ ds < R,$$

for all $t \in \mathbb{R}$ and for all $x \in P$ satisfying $r \le x(s) \le R$, $\forall s \in \mathbb{R}$.

Then equation (2) has at least two solutions in $P \setminus \{0\}$.

Proof. As we have seen in the proof of the above Theorem 1 there exists $R_1 > R$ such that

$$i(F, P_{\sigma}) = 1, \quad \forall \sigma \ge R_1.$$

Now, the proof literally repeats the last part the proof from [2, Theorem 3.1]

Remark 2. If we take $g(t, s, y) \equiv 1$ in the above theorem, we obtain the following result which is a generalization of Theorem 3.1 in [2].

Theorem 5. Let f satisfy (H*1),(H*2) of Theorem (2) and:

$$(H^*4) \ r(L(\tau, a)) < 1 \quad \text{ and } \quad r(L(\tau, b)) < p,$$

(H*5) there exist r, R, 0 < r < R such that

$$r < \int_0^{\tau(t)} f(t, s, x(t - s - l)) \ ds < R$$

for all $t \in \mathbb{R}$ and for all $x \in P$ satisfying $r \leq x(s) \leq R$, $\forall s \in \mathbb{R}$.

Then equation (2) has at least two solutions in $P \setminus \{0\}$.

Proof. We discuss two steps:

If p = 1 we get Theorem 3.1 in [2].

If p > 1, we apply Theorem (4) above.

Now we give an example of Theorem 4.

Example 6. Let $h:[0,+\infty]\to\mathbb{R}^+$ be a continuous function defined by

$$h(x) = \begin{cases} x(1-x), & 0 \le x \le \frac{1}{2} \\ \phi(x), & \frac{1}{2} \le x \le 1 \\ \sqrt{2x}, & x \ge 1 \end{cases}$$

where $\phi: [\frac{1}{2},1] \to [0,+\infty)$ is a continuous function with $\phi(\frac{1}{2}) = \frac{1}{4}, \phi(1) = \sqrt{2}$ and take $\alpha: \mathbb{R} \to \mathbb{R}^+$ a continuous and ω -periodic function ($\omega > 0$) satisfying

$$\frac{1}{\sqrt{2}} < \int_0^{\tau(t)} \sqrt{\alpha(t-s)} \, ds < 1 \quad \text{and} \quad \int_0^{\tau(t)} \alpha(t-s) \, ds < 1.$$
 (8)

Let for all
$$(t, s, y) \in \mathbb{R} \times \mathbb{R} \times [0, +\infty], f(t, s, y) = \sqrt{\alpha(t - s)}h(y)$$
, and
$$g(t, s, y) = \begin{cases} 1 & 0 \le y \le 2\pi \\ 1 + s^2 \sin^2 y & y \ge 2\pi. \end{cases}$$

By taking $\alpha^* = \max_{t \in \mathbb{R}} \alpha(t)$, if $R > 2\alpha^* \left(\tau^* + \frac{\tau^{*3}}{3}\right)^2$, then for all $x \in P$ with $1 \le x(s) \le R$, $\forall s \in \mathbb{R}$ we have

$$1 < \int_0^{\tau(t)} f(t, s, x(t - s - l)) g(t, s, x(t - s - l)) \ ds < R \quad \text{for all} \quad t \in \mathbb{R}.$$

Then, it is easily seen that hypotheses (H1)-(H3) of Theorem 4 and (H6) are satisfied with $p=2, q=2, \ a(t,s)=\sqrt{\alpha(t-s)}, \ b(t,s)=2\alpha(t-s), \ r=1,$ and $R>2\alpha^*(\tau^*+\frac{\tau^{*3}}{3})^2$.

From (8) we easily get

$$r(L(\tau, a)) < 1, \quad r(L(\tau, b)) < 2.$$

In the particular case where $\alpha(t) \equiv d \in \mathbb{R}^+$ (0 < d < 2), these conditions are verified if

$$\frac{1}{\sqrt{2d}} < \min_{t \in \mathbb{R}} \tau(t) \le \max_{t \in \mathbb{R}} \tau(t) < \min\{\frac{1}{d}, \frac{1}{\sqrt{d}}\}.$$

References

- [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
- [2] A. Cañada and A. Zertiti, Topological methods in the study of positive solutions for some nonlinear delay integral equations, *Nonlinear Analysis*, *T.M.A.*, **23**, No 9 (1994), 1153-1165.
- [3] A. Cañada and A. Zertiti, Fixed point theorems for systems of equations in ordered Banach spaces with applications to differential and integral equations, *Nonlinear Analysis*, T.M.A. 27 (1996), 397-411.
- [4] K.L. Cooke and J.L. Kaplan, A periodicity threshold theorem for epidemics and population growth, *Math. Biosci.*, **31** (1976), 87-104.
- [5] M.S. El Khannoussi and A. Zertiti, Existence of coexistence states for systems of equations in ordered Banach spaces, *International Journal of Applied Mathematics (IJAM)*, **27**, No 6 (2014), 573-587.
- [6] M.S. El Khannoussi and A. Zertiti, Fixed point theorems in the study of positive solutions for systems of equations in ordered Banach spaces, *International Journal of Applied Mathematics (IJAM)*, 28, No 3 (2015), 291-306.

- [7] D. Guo and V. Lakshmikantham, Positive solutions of integral equations arising in infectious diseases, *J. Math. Anal. Appl.*, **134** (1988), 1-8.
- [8] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, New York (1988).
- [9] M. G. Krein and M. Rutman, Linear operators leaving invariant a cone in a Banach space, *Amer. Math. Soc. Transl.*, **10** (1962), 1-128.
- [10] M.A. Krasnosel'skii, *Positive Solutions of Operator Equations*. Noordhoff, Groningen (1964).
- [11] R. Nussbaum, A periodicity threshold theorem for some nonlinear integral equations, SIAM J. Math. Anal., 9 (1978), 356-376.
- [12] R. Torrejon, Positive almost periodic solution of a state-dependent delay nonlinear integral equation, *Nonlinear Analysis*, **20** (1993), 1383-1416.