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Abstract: In this work we give an extension of the results obtained in [2],
we are interested in producing sufficient conditions for the existence of positive
periodic solution to

7(t)
() = / Wt s,2(t — s — 1)) ds,
0
in the special case where h(t,s,z) = f(t,s,x)g(t, s, x).

For it, we use topological methods, more precisely, the fixed point index.
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1. Introduction

In their paper [2], Canada and Zertiti have studied integral equations of type
7(t)
x(t) = / h(t,s,z(t —s—1)) ds, (1)
0

which formulate a model to explain the evolution of certain infectious diseases
and it may also be considered as a growth equation for single species populations
when the birth rate varies seasonally. It includes, as a particular case, different
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equations suggested by other authors (see [2, 4, 7, 12, 11]). For instance, Cooke
and Kaplan in [4] have defined a number § (dependent on f), such that for

each 7 > (8 the equation
t

wt)= [ f(s,2(s)) ds

t—7
has a positive solution of period w. Also, in [12] Torrejon has shown the exis-
tence of nontrivial almost periodic solution of the equation

t

o) = [ lsals) ds
t—o(x(t))

where f is a continuous nonnegative almost periodic function in ¢. And in [11],

Nussbaum has shown that nontrivial w-periodic solutions of

() = /t Pt — s,7)f(s,2(5)) ds.

bifurcate from the trivial solution (f(¢,0) = 0) when 7 exceeds a certain thresh-
old value 79. Finally in [2], Canada and Zertiti have given a condition (sufficient
and necessary) for the existence of solution to (1).

In this work we give an extension of results obtained in [2]. We are interested
in producing sufficient conditions for the existence of positive periodic solution
to (1) in the special case where h(t,s,y) = f(t,s,y)g(t, s,y) under the following
assumptions on functions f and g :

f.g:R xR x [0, +00[— R are continuous functions with:

(F1) : f(t,5,0) =0 for all (t,s) € R xR,

(F2) = f(t,s,y) > 0,9(t,s,y) > 0,V(t,s,y) € R x R x [0, +00[ and there exists
a positive number w, (w > 0) such that f(t + w,s,y) = f(¢,s,y) and
g(t +w,s,y) = g(t,s,y),9(t, s,y) € R x R x [0, +00],

(F3) : [ is a nonnegative constant and 7 : R — RT is a continuous and
A-periodic function (A > 0) such that § = g,p, g € N.

In [4, 11], the authors assume that lim,_, 4 f(thy) = 0 uniformly in (¢, s),

and in [2], they assume that there exists a continuous function b: R x R — R
such that lim, 4 W = b(t, s) uniformly in (¢,s). In this paper we allow
f to have more general asymptotic behavior at infinity (see Theorems 1 and 2
below). In Theorem 2 we suppose that g(¢, s,y) = 1 and there exist a continuous
function b : R x R — R and p > 1 such that lim, , W = b(t,s)
uniformly in (¢,s). Then we have two cases: p =1 and p > 1. If p = 1 we refer
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to results of [2] for more details, and if p > 1 we apply Theorem 1 below, which
extends the results of [2].

We finish this paper by proving several results about multiplicity of solu-
tions, in the line of Guo and Lakshmikantham [7]. Some examples are given to
illustrate our results.

2. Main Results

Denote by P the cone of nonnegative functions in the real Banach space E, of
all real and continuous qw— periodic functions defined on R, where if z € FE

ol = masx Ja()].
<t<qw
Let us consider the intez%ral equation
T(t
‘T(t) = f(t,S,.’E(t—S—l))g(t,S,CC(t—S—Z)) ds. (2)
0

In this section we are interested in the existence of solution of (2) in P\ {0}.
Define the operator F': E — E by

(1)
Fx(t) = /0 fit,s,x(t —s—1))g(t,s,z(t —s—1)) ds.

Then equation (2) has a continuous, nonnegative, and nontrivial qw-periodic
solution iff there exists x € P\ {0} verifying

r = Fux.
Now, we present and prove our main results.

Theorem 1. Suppose that :

(H1) there exists a continuous function a : R x R — R such that

lim f(t,s,9)g(t,s,y)
y—0t Yy

= a(t,s), uniformly in (t,s) € R x R,

(H2) there exists a continuous function b: R x R — R and p > 1 such that

p
lim f(t,s,y)

=b(t iformly in (t R x R
g y (t,s), uniformly in (t,s) € R x R,

(H3) there exists 1 > 0 such that for all x € P, we have
7(t)
/ g(t,s,x(t —s—1))%ds < u, VteR,
0

where q verifying % + % =1
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(H4) A, =0 VteR, where A, = {s € R : a(t,t — 5) = 0}

Then if
r(L(t,a)) > 1, and r(L(7,b)) < p, (3)

equation (2) has a solution in P\ {0}, where r(L(7,a)) means the spectral
radius of the linear operator L(T,a) : E — E defined by

7(t)
L(r,a)x(t) = / a(t,s)x(t —s—1)ds, Vxe€FE,
0

(analogously for r(L(7,b)) and L(T,b)).

Proof. We must observe that (F, P) is an ordered Banach space with p # 0.
Also it is not difficult to see that F': P — P is completely continuous. Moreover:

(a) We claim that there exists R > 0 such that if x € P and t € [0, 1] satisfy
x = tFz, then ||z|| < R.

Suppose that is not true, then we can find sequences A, € [0,1] and z,, € P
such that ||z,|| — oo and
where the partial ordering is that induced by the cone P ( z,y € E then x <y
ify—xeP).

By using the young inequality we get

)
Fan(t) = /0 Ft s an(t — 5 — D)g(ts s, am(t — 5 — 1))ds

1 7@

< - flt,s,zp(t —s—1))P ds+
P Jo
1 7@

—|——/ g(t,s,xn(t —s—1))7 ds
q.Jo

1 1
= Z_)Glxn(t) + 6G2$n(t)7
where

(1)
Gixn(t) = /0 flt,s,xn(t —s—1))P ds

and

T(t)
Gon(t) = / gt s, 2t — s — )7 ds,
0
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so that
T 1Gizy,  1Gazy,

[znll = p llzall g [lzall

_ 1Gizy — L(r,b)z, | 1L(7,0)zn | 1Gomy
p e P llzall gl

By letting 9,, = ﬁ, we get

— L(7,b 1 1G
L 1Tn (7—7 )-’En + —L(T, b)(;n 4= 2&n o
P (| P q ||z

By using the fact that L(7,b) is a positive linear map, we obtain

on € P. (4)

L(7,b) (% Grzn ﬂxi ﬁT’ b)x") + L(r,b) (%L(T, b)5n>
FL(7b) (é ﬁ;:"ﬁ) — L(r, )6, € P. (5)

It is not difficult to see that [2, Theorem 2.1],

1Gixy — L(7,b)y,

[@n]|—sc0 P [l ||
xn €P

=0,

Gaxn
llznl
On the other hand, since L(7,b) is compact, we may as well assume that

L(7,b)6,, — y € P. Then by letting n — oo in (5) we get
1
]—)L(T, by —y € P.

—>0asn— oo.

And by virtue of (H3), we easily get %

An easy induction argument shows that
1
Z;L”(ﬂ by —y € P,

for every positive integer n. Since T(%L(T, b)) < 1 it follows that

#LR(T, b)y — 0 and then —y € P, which implies that y = 0 since y € P.
On the other hand from (4) we have

1Gizy, — L(1,b)x, 1 1Goxy,

0<6,<- + —L(7,b)0,, + — .
p (e p q [lzn|

Then, we can easily get
1G — L(1,b 1 1G
1 Gidy (7_7 )xn + —L(T, b)5n +Z 2Tn
p [[n]] p q [lznl
Since we have already shown that

1<
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1Gixy, — L(1,b 1 1G
L 1Tn (7—7 )xn + —L(T, b)én 4+ 2&n
p [ p q [Jzal
we have arrived at a contradiction.
(b) We shall prove the existence of F, (0) the right derivative of F' along P
at 0.

For this, we must prove that
F(0)(z)(t) = L(r,a)z(t), Vze€E,

—0 as n— o

or what is the same

lim Fx — L(t,a)x o,
=0 ]
zeP
or equivalently
|[Fz — L(, a)z|

Ve ¢ RY, 3r(e) e RY : ||z|| < r(e)(z € P) =

Let € > 0. Then from (H1) there is r(¢) € RT such that
| [t s,9)9(ts,y) —alt,s)y [< ey
V(t,s) eRxR,VyeR:0 <y <r(e).
Then if z € P satisfies ||z|| < r(e), we obtain
| Fa(t) — L(7, a)x(t) |

(1)
< /0 | F(ts,a(t — s — D)g(t,s.2(t — s — 1))
—a(t,s)z(t—s—1)|ds

7(t)
S/ |ex(t —s—1)|ds
0
<er* VteR. (7%= t)).
Sertlel, ViR (= mas r()
Consequently,
|Fx — L(r,a)z|| <er*||z|, VzeP:lz|]<r(e).

(c) It is easily seen (see [2, Theorem 2.1]) that F (0) is strongly positive.

Now, from (a), we obtain that i(F, Pr) = 1. And from (b), (c) and (3), we
obtain by using Lemma 13.1 in Amann [1], that there exists r < R, r > 0 such
that i(F, P,) = 0 (where, for any p > 0,P, = {z € P : |z|| < p} and i(F, P,)
means the fixed point index with respect to the cone P).
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Then, (by the additivity property) i(F, Pg \ P,) = 1 # 0, which implies the
existence of a solution of (2) in P\{0}.

Remark 1. If we take g(¢,s,y) = 1 in the above theorem, we obtain the
following result which is a generalization of Theorem 2.1 in [2] .

Theorem 2. Let us suppose the following hypotheses

(H*1) there exists a continuous function a : R x R — R such that

t
lim+ ftsy) = a(t, s), uniformly in (t,s) € R x R,
y—0 Y

(H*2) there exist a continuous function b: R x R — R and (p > 1) such that

p
hm f(t7 87 y)

= b(t iformly in (t R x R
oo ) (t,s), uniformly in (t,s) € ,

(H*3) fc{t =0 VteR, where A, ={se€R:a(t,t —s)=0}.

Then if
r(L(r,a)) >1 and r(L(1,b)) < p, (6)

equation (2) has a solution in P\ {0}.

Proof. We discuss two steps:
If p =1, we get Theorem 2.1 in [2].
If p > 1, we apply the above theorem (1) by observing that

()
/ lds < 7 + 1.
0

Now we present an example of Theorem 1 which cannot be derived from
the results of [2].

Example 3. Let & : [0,+00] — R be a continuous function verifying

. h(y)
= ! = 1 _— =
h(0) =0 (Vh)(0)=a>0, = B3>0
and take d : R — R a continuous, positive and w-periodic function (w > 0) and
l=0. If for all (t,s,y) € R x R x [0,400], f(t,s,y) = \/d(t —s)h(y), and
1 0<y<2rm

l,s, =
gl y) 1+ s%sin®y  y > 2m.
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(1) 27_*3 7_*5
Then by observing that / glt,s,z(t —s —1))%ds < 7% +

— +1
3+5+’

0
hypotheses (H1)-(H4) of Theorem 1 are satisfied with p = 2,q¢ = 2, a(t,s) =

a\/d(t — s), and b(t,s) = Bd(t — s).

Consequently, if
1 <r(L(r,a)), r(L(7,b)) <2, (7)

equation (2) has a solution in P\ {0}.
Note that in the particular case where d(t) = d € RT conditions (7) are

satisfied if we take

L < minr(t) < maxr(t) < =
—— minrT max T -_—.
avd ~— teR T teR £d

Here we use that fact that

(1) (1)
i < <
?élﬂg/o a(t,s)ds < r(L(t,a)), r(L(1,b)) < r{leaRx/O b(t, s)ds,

(see [11]).

3. Multiplicity of Solutions
In this section, we present several results about multiplicity of solutions, which

generalize some previous ones by Guo and Lakshmikantham [7], and [2]. An
example is given to illustrate the obtained generalizations.

Theorem 4. Let f and g satisfy (H1),(H2), and (H3) of Theorem (1) and
(H5) r(L(t,a)) <1 and r(L(r,b))<p (p>1),

(H6) There exist r, R,0 < r < R such that

(1)
r</ flt,s,z(t—s—1))g(t,s,x(t —s—1)) ds < R,
0

for all t € R and for all x € P satisfying r < z(s) < R, VseR.

Then equation (2) has at least two solutions in P\ {0}.
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Proof. As we have seen in the proof of the above Theorem 1 there exists
Ry > R such that
i(F,Py,) =1, Yo > Rj.

Now, the proof literally repeats the last part the proof from [2, Theorem 3.1]

Remark 2. If we take g(¢,s,y) = 1 in the above theorem, we obtain the
following result which is a generalization of Theorem 3.1 in [2].

Theorem 5. Let f satisfy (H*1),(H*2) of Theorem (2) and:
(H*4) r(L(1,a)) <1 and r(L(7,b)) < p,

(H*5) there exist r, R, 0 < r < R such that

(1)
r</ flt,s,x(t—s—1)) ds <R
0

for all t € R and for all x € P satisfying r < xz(s) < R, Vsé&R.

Then equation (2) has at least two solutions in P\ {0}.

Proof. We discuss two steps:
If p=1 we get Theorem 3.1 in [2].
If p > 1, we apply Theorem (4) above.

Now we give an example of Theorem 4.

Example 6. Let A : [0,+00] — R be a continuous function defined by
z(1—x), OS:):S%

h(z) = { é(x), ;<<
\/%, r>1

Lo(l) = V2

where ¢ : [$,1] — [0, +00) is a continuous function with ¢(3) =
> () satisfying

and take o : R — R a continuous and w-periodic function

1 7(t) 7(¢)
NG / Vva(t—s)ds<1l and / a(t —s) ds < 1. (8)
0

Let for all (t,s,y) € R x R x [0,400], f(t,s,y) = /a(t — s)h(y), and
0<y<2rm

1+ s%sin®y  y > 2m.

3)
(w

g(t,s,y) =
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By taking o = maxier a(t), if R > 2a* (7% + %)2, then for all z € P with
1 <z(s) <R,Vs €R we have

(1)
1< / flt,s,z(t—s—1))g(t,s,x(t —s—1)) ds < R forall teR.
0

Then, it is easily seen that hypotheses (H1)-(H3) of Theorem 4 and (H6)
are satisfied with p = 2,q = 2, a(t,s) = y/a(t — s), b(t,s) = 2a(t —s), r =1,
and R > 20* (7% + 7;;3)2.

From (8) we easily get

r(L(r,a)) <1, r(L(1,b)) <2.

In the particular case where a(t) = d € RT (0 < d < 2), these conditions are
verified if

1
min 7(¢) < max7(t) < min{—

1 1
V2d < TR teR d’ﬁ}'
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