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Abstract: In this work we give an extension of the results obtained in [2],
we are interested in producing sufficient conditions for the existence of positive
periodic solution to

x(t) =

∫ τ(t)

0
h(t, s, x(t− s− l)) ds,

in the special case where h(t, s, x) = f(t, s, x)g(t, s, x).
For it, we use topological methods, more precisely, the fixed point index.
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1. Introduction

In their paper [2], Cañada and Zertiti have studied integral equations of type

x(t) =

∫ τ(t)

0
h(t, s, x(t− s− l)) ds, (1)

which formulate a model to explain the evolution of certain infectious diseases
and it may also be considered as a growth equation for single species populations
when the birth rate varies seasonally. It includes, as a particular case, different
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equations suggested by other authors (see [2, 4, 7, 12, 11]). For instance, Cooke
and Kaplan in [4] have defined a number β (dependent on f), such that for
each τ > β the equation

x(t) =

∫ t

t−τ

f(s, x(s)) ds

has a positive solution of period ω. Also, in [12] Torrejon has shown the exis-
tence of nontrivial almost periodic solution of the equation

x(t) =

∫ t

t−σ(x(t))
f(s, x(s)) ds,

where f is a continuous nonnegative almost periodic function in t. And in [11],
Nussbaum has shown that nontrivial ω-periodic solutions of

x(t) =

∫ t

t−τ

P (t− s, τ)f(s, x(s)) ds,

bifurcate from the trivial solution (f(t, 0) ≡ 0) when τ exceeds a certain thresh-
old value τ0. Finally in [2], Cañada and Zertiti have given a condition (sufficient
and necessary) for the existence of solution to (1).

In this work we give an extension of results obtained in [2]. We are interested
in producing sufficient conditions for the existence of positive periodic solution
to (1) in the special case where h(t, s, y) = f(t, s, y)g(t, s, y) under the following
assumptions on functions f and g :
f, g : R× R× [0,+∞[−→ R are continuous functions with:

(F1) : f(t, s, 0) = 0 for all (t, s) ∈ R×R,

(F2) : f(t, s, y) ≥ 0, g(t, s, y) ≥ 0,∀(t, s, y) ∈ R × R× [0,+∞[ and there exists
a positive number w, (w > 0) such that f(t + w, s, y) = f(t, s, y) and
g(t+ w, s, y) = g(t, s, y),∀(t, s, y) ∈ R× R× [0,+∞[,

(F3) : l is a nonnegative constant and τ : R −→ R
+ is a continuous and

λ-periodic function (λ > 0) such that ω
λ
= p

q
, p, q ∈ N.

In [4, 11], the authors assume that limy→+∞
f(t,s,y)

y
= 0 uniformly in (t, s),

and in [2], they assume that there exists a continuous function b : R×R −→ R

such that limy→+∞
f(t,s,y)

y
= b(t, s) uniformly in (t, s). In this paper we allow

f to have more general asymptotic behavior at infinity (see Theorems 1 and 2
below). In Theorem 2 we suppose that g(t, s, y) ≡ 1 and there exist a continuous

function b : R × R −→ R and p ≥ 1 such that limy→+∞
f(t,s,y)p

y
= b(t, s)

uniformly in (t, s). Then we have two cases: p = 1 and p > 1. If p = 1 we refer
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to results of [2] for more details, and if p > 1 we apply Theorem 1 below, which
extends the results of [2].

We finish this paper by proving several results about multiplicity of solu-
tions, in the line of Guo and Lakshmikantham [7]. Some examples are given to
illustrate our results.

2. Main Results

Denote by P the cone of nonnegative functions in the real Banach space E, of
all real and continuous qω− periodic functions defined on R, where if x ∈ E

‖x‖ = max
0≤t≤qω

|x(t)|.
Let us consider the integral equation

x(t) =

∫ τ(t)

0
f(t, s, x(t− s− l))g(t, s, x(t − s− l)) ds. (2)

In this section we are interested in the existence of solution of (2) in P \ {0}.
Define the operator F : E −→ E by

Fx(t) =

∫ τ(t)

0
f(t, s, x(t− s− l))g(t, s, x(t − s− l)) ds.

Then equation (2) has a continuous, nonnegative, and nontrivial qω-periodic
solution iff there exists x ∈ P \ {0} verifying

x = Fx.

Now, we present and prove our main results.

Theorem 1. Suppose that :

(H1) there exists a continuous function a : R× R −→ R such that

lim
y→0+

f(t, s, y)g(t, s, y)

y
= a(t, s), uniformly in (t, s) ∈ R× R,

(H2) there exists a continuous function b : R× R −→ R and p > 1 such that

lim
y→+∞

f(t, s, y)p

y
= b(t, s), uniformly in (t, s) ∈ R× R,

(H3) there exists µ > 0 such that for all x ∈ P , we have
∫ τ(t)

0
g(t, s, x(t− s− l))qds < µ, ∀t ∈ R,

where q verifying 1
p
+ 1

q
= 1
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(H4)
◦
At = ∅ ∀t ∈ R, where At = {s ∈ R : a(t, t− s) = 0}.

Then if
r(L(τ, a)) > 1, and r(L(τ, b)) < p, (3)

equation (2) has a solution in P \ {0}, where r(L(τ, a)) means the spectral
radius of the linear operator L(τ, a) : E −→ E defined by

L(τ, a)x(t) =

∫ τ(t)

0
a(t, s)x(t− s− l) ds, ∀x ∈ E,

(analogously for r(L(τ, b)) and L(τ, b)).

Proof. We must observe that (E,P ) is an ordered Banach space with
◦
P 6= ∅.

Also it is not difficult to see that F : P → P is completely continuous. Moreover:
(a) We claim that there exists R > 0 such that if x ∈ P and t ∈ [0, 1] satisfy

x = tFx, then ‖x‖ ≤ R.
Suppose that is not true, then we can find sequences λn ∈ [0, 1] and xn ∈ P

such that ‖xn‖ −→ ∞ and

xn = λnFxn ≤ Fxn,

where the partial ordering is that induced by the cone P ( x, y ∈ E then x ≤ y

if y − x ∈ P ).
By using the young inequality we get

Fxn(t) =

∫ τ(t)

0
f(t, s, xn(t− s− l))g(t, s, xn(t− s− l))ds

≤ 1

p

∫ τ(t)

0
f(t, s, xn(t− s− l))p ds+

+
1

q

∫ τ(t)

0
g(t, s, xn(t− s− l))q ds

=
1

p
G1xn(t) +

1

q
G2xn(t),

where

G1xn(t) =

∫ τ(t)

0
f(t, s, xn(t− s− l))p ds

and

G2xn(t) =

∫ τ(t)

0
g(t, s, xn(t− s− l))q ds,
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so that

xn

‖xn‖
≤ 1

p

G1xn

‖xn‖
+

1

q

G2xn

‖xn‖

=
1

p

G1xn − L(τ, b)xn
‖xn‖

+
1

p

L(τ, b)xn
‖xn‖

+
1

q

G2xn

‖xn‖
.

By letting δn = xn

‖xn‖
, we get

1

p

G1xn − L(τ, b)xn
‖xn‖

+
1

p
L(τ, b)δn +

1

q

G2xn

‖xn‖
− δn ∈ P. (4)

By using the fact that L(τ, b) is a positive linear map, we obtain

L(τ, b)
(1

p

G1xn − L(τ, b)xn
‖xn‖

)

+ L(τ, b)
(1

p
L(τ, b)δn

)

+L(τ, b)
(1

q

G2xn

‖xn‖
)

− L(τ, b)δn ∈ P. (5)

It is not difficult to see that [2, Theorem 2.1],

lim
‖xn‖−→∞

xn∈P

1

p

G1xn − L(τ, b)xn
‖xn‖

= 0,

And by virtue of (H3), we easily get 1
q
G2xn

‖xn‖
−→ 0 as n −→ ∞.

On the other hand, since L(τ, b) is compact, we may as well assume that
L(τ, b)δn → y ∈ P . Then by letting n → ∞ in (5) we get

1

p
L(τ, b)y − y ∈ P.

An easy induction argument shows that
1

pn
Ln(τ, b)y − y ∈ P,

for every positive integer n. Since r(1
p
L(τ, b)) < 1 it follows that

1
pn
Ln(τ, b)y → 0 and then −y ∈ P , which implies that y = 0 since y ∈ P .
On the other hand from (4) we have

0 ≤ δn ≤ 1

p

G1xn − L(τ, b)xn
‖xn‖

+
1

p
L(τ, b)δn +

1

q

G2xn

‖xn‖
.

Then, we can easily get

1 ≤ ‖1
p

G1xn − L(τ, b)xn
‖xn‖

+
1

p
L(τ, b)δn +

1

q

G2xn

‖xn‖
‖.

Since we have already shown that
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1

p

G1xn − L(τ, b)xn
‖xn‖

+
1

p
L(τ, b)δn +

1

q

G2xn

‖xn‖
→ 0 as n → ∞

we have arrived at a contradiction.
(b) We shall prove the existence of F ′

+(0) the right derivative of F along P

at 0.
For this, we must prove that

F ′
+(0)(x)(t) = L(τ, a)x(t), ∀x ∈ E,

or what is the same

lim
x−→0
x∈P

Fx− L(τ, a)x

‖x‖ = 0,

or equivalently

∀ε ∈ R
+,∃r(ε) ∈ R

+ : ‖x‖ ≤ r(ε)(x ∈ P ) ⇒ ‖Fx− L(τ, a)x‖
‖x‖ ≤ ε.

Let ε > 0. Then from (H1) there is r(ε) ∈ R
+ such that

| f(t, s, y)g(t, s, y) − a(t, s)y |≤ ε | y |
∀(t, s) ∈ R× R,∀y ∈ R : 0 ≤ y ≤ r(ε).

Then if x ∈ P satisfies ‖x‖ ≤ r(ε), we obtain

| Fx(t)− L(τ, a)x(t) |

≤
∫ τ(t)

0
| f(t, s, x(t− s− l))g(t, s, x(t − s− l))

− a(t, s)x(t− s− l) | ds

≤
∫ τ(t)

0
| εx(t− s− l) | ds

≤ ετ∗‖x‖, ∀t ∈ R. (τ∗ = max
0≤t≤λ

τ(t)).

Consequently,

‖Fx− L(τ, a)x‖ ≤ ετ∗‖x‖, ∀x ∈ P : ‖x‖ ≤ r(ε).

(c) It is easily seen (see [2, Theorem 2.1]) that F ′
+(0) is strongly positive.

Now, from (a), we obtain that i(F,PR) = 1. And from (b), (c) and (3), we
obtain by using Lemma 13.1 in Amann [1], that there exists r < R, r > 0 such
that i(F,Pr) = 0

(

where, for any ρ > 0, Pρ = {x ∈ P : ‖x‖ < ρ} and i(F,Pρ)
means the fixed point index with respect to the cone P

)

.
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Then, (by the additivity property) i(F,PR \Pr) = 1 6= 0, which implies the
existence of a solution of (2) in P\{0}.

Remark 1. If we take g(t, s, y) ≡ 1 in the above theorem, we obtain the
following result which is a generalization of Theorem 2.1 in [2] .

Theorem 2. Let us suppose the following hypotheses

(H*1) there exists a continuous function a : R× R −→ R such that

lim
y→0+

f(t, s, y)

y
= a(t, s),uniformly in (t, s) ∈ R× R,

(H*2) there exist a continuous function b : R×R −→ R and (p ≥ 1) such that

lim
y→+∞

f(t, s, y)p

y
= b(t, s),uniformly in (t, s) ∈ R× R,

(H*3)
◦
At = ∅ ∀t ∈ R, where At = {s ∈ R : a(t, t− s) = 0}.

Then if

r(L(τ, a)) > 1 and r(L(τ, b)) < p, (6)

equation (2) has a solution in P \ {0}.

Proof. We discuss two steps:
If p = 1, we get Theorem 2.1 in [2].
If p > 1, we apply the above theorem (1) by observing that

∫ τ(t)

0
1ds < τ∗ + 1.

Now we present an example of Theorem 1 which cannot be derived from
the results of [2].

Example 3. Let h : [0,+∞] → R
+ be a continuous function verifying

h(0) = 0 (
√
h)′(0) = α > 0, lim

y→+∞

h(y)

y
= β > 0

and take d : R → R a continuous, positive and ω-periodic function (ω > 0) and
l = 0 . If for all (t, s, y) ∈ R× R× [0,+∞], f(t, s, y) =

√

d(t− s)h(y), and

g(t, s, y) =

{

1 0 ≤ y ≤ 2π

1 + s2 sin2 y y ≥ 2π.
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Then by observing that

∫ τ(t)

0
g(t, s, x(t − s − l))2ds < τ∗ +

2τ∗3

3
+

τ∗5

5
+ 1,

hypotheses (H1)-(H4) of Theorem 1 are satisfied with p = 2, q = 2, a(t, s) =
α
√

d(t− s), and b(t, s) = βd(t− s).

Consequently, if

1 < r(L(τ, a)), r(L(τ, b)) < 2, (7)

equation (2) has a solution in P \ {0}.
Note that in the particular case where d(t) ≡ d ∈ R

+ conditions (7) are
satisfied if we take

1

α
√
d
< min

t∈R
τ(t) ≤ max

t∈R
τ(t) <

2

βd
.

Here we use that fact that

min
t∈R

∫ τ(t)

0
a(t, s)ds ≤ r(L(τ, a)), r(L(τ, b)) ≤ max

t∈R

∫ τ(t)

0
b(t, s)ds,

(see [11]).

3. Multiplicity of Solutions

In this section, we present several results about multiplicity of solutions, which
generalize some previous ones by Guo and Lakshmikantham [7], and [2]. An
example is given to illustrate the obtained generalizations.

Theorem 4. Let f and g satisfy (H1),(H2), and (H3) of Theorem (1) and

(H5) r(L(τ, a)) < 1 and r(L(τ, b)) < p (p > 1),

(H6) There exist r,R, 0 < r < R such that

r <

∫ τ(t)

0
f(t, s, x(t− s− l))g(t, s, x(t − s− l)) ds < R,

for all t ∈ R and for all x ∈ P satisfying r ≤ x(s) ≤ R, ∀s ∈ R.

Then equation (2) has at least two solutions in P \ {0}.
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Proof. As we have seen in the proof of the above Theorem 1 there exists
R1 > R such that

i(F,Pσ) = 1, ∀σ ≥ R1.

Now, the proof literally repeats the last part the proof from [2, Theorem 3.1]

Remark 2. If we take g(t, s, y) ≡ 1 in the above theorem, we obtain the
following result which is a generalization of Theorem 3.1 in [2].

Theorem 5. Let f satisfy (H*1),(H*2) of Theorem (2) and:

(H*4) r(L(τ, a)) < 1 and r(L(τ, b)) < p,

(H*5) there exist r,R, 0 < r < R such that

r <

∫ τ(t)

0
f(t, s, x(t− s− l)) ds < R

for all t ∈ R and for all x ∈ P satisfying r ≤ x(s) ≤ R, ∀s ∈ R.

Then equation (2) has at least two solutions in P \ {0}.

Proof. We discuss two steps:

If p = 1 we get Theorem 3.1 in [2].

If p > 1, we apply Theorem (4) above.

Now we give an example of Theorem 4.

Example 6. Let h : [0,+∞] → R
+ be a continuous function defined by

h(x) =











x(1− x), 0 ≤ x ≤ 1
2

φ(x), 1
2 ≤ x ≤ 1√

2x, x ≥ 1

,

where φ : [12 , 1] → [0,+∞) is a continuous function with φ(12 ) =
1
4 , φ(1) =

√
2

and take α : R → R
+ a continuous and ω-periodic function (ω > 0) satisfying

1√
2
<

∫ τ(t)

0

√

α(t− s) ds < 1 and

∫ τ(t)

0
α(t− s) ds < 1. (8)

Let for all (t, s, y) ∈ R× R× [0,+∞], f(t, s, y) =
√

α(t− s)h(y), and

g(t, s, y) =

{

1 0 ≤ y ≤ 2π

1 + s2 sin2 y y ≥ 2π.
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By taking α∗ = maxt∈R α(t), if R > 2α∗
(

τ∗ + τ∗3

3

)2
, then for all x ∈ P with

1 ≤ x(s) ≤ R, ∀s ∈ R we have

1 <

∫ τ(t)

0
f(t, s, x(t− s− l))g(t, s, x(t − s− l)) ds < R for all t ∈ R.

Then, it is easily seen that hypotheses (H1)-(H3) of Theorem 4 and (H6)
are satisfied with p = 2, q = 2, a(t, s) =

√

α(t− s), b(t, s) = 2α(t − s), r = 1,

and R > 2α∗
(

τ∗ + τ∗3

3

)2
.

From (8) we easily get

r(L(τ, a)) < 1, r(L(τ, b)) < 2.

In the particular case where α(t) ≡ d ∈ R
+ (0 < d < 2), these conditions are

verified if
1√
2d

< min
t∈R

τ(t) ≤ max
t∈R

τ(t) < min{1
d
,
1√
d
}.
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