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1. Introduction

Let N denote the set of positive integers and let ℓ2(N) be the Hilbert space of
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square summable sequences of complex numbers. Suppose θ : N → C and φ :
N → N are two mappings. Then a bounded linear transformation Cθ, φ :
ℓ2(N) → ℓ2(N) defined by Cθ, φ (f) = θ. f ◦ φ for every f ∈ ℓ2(N) is known
as a weighted composition operator induced by θ and φ. It is easy to see
that Cθ, φ is a bounded operator if and only if there exists M > 0 such that
∑

m∈φ−1({n})
|θ(m)|2 ≤ M for every n ∈ N and ‖Cθ, φ‖ = sup

n∈φ(N)

√
∑

k∈φ−1({n})

∣
∣θ(k)

∣
∣2.

For n ∈ N, the orbit of n with respect to φ is defined as

Oφ(n) = {m ∈ N : φr(m) = φs(n) for some r, s ∈ N} ,

whereby the symbol φr we shall mean φ ◦ φ ◦ φ ◦ ...φ
︸ ︷︷ ︸

r times

. A complex number λ is

called an eigenvalue of a bounded linear operator A : H → H from Hilbert
space H into itself if there exists non-zero f ∈ H such that Af = λf . The
set of all complex numbers λ such that A − λI is not invertible is called
the spectrum of A and it is denoted by σ(A). The Banach algebra of all
bounded linear operators from H into itself is denoted by B(H). For G ⊂ N,
let ℓ2(G) =

{
f ∈ ℓ2(N) : f(m) = 0 for every m /∈ G

}
. The symbol Cθ, φ

∣
∣
ℓ2(G)

denotes the restriction of Cθ, φ to ℓ2(G) and the symbol #(G) denotes the
cardinality of the set G. For A ∈ B(H), the numerical range of A is defined
as W (A) = {< Ax, x >: x ∈ H and ‖x‖ = 1} and numerical radius of A is de-
fined as w(A) = sup{|λ| : λ ∈ W (A)}. So far as we know, very little is known
about the numerical ranges of weighted composition operators as well as other
bounded linear operators. Numerical ranges of some operators are obtained by
Bourdon and Shapiro [1], Gustafson and Rao [3], Komal and Sharma [5], Ridge
[6], Tam [8], etc. In the following proposition we list some well known results
regarding numerical ranges.

Proposition 1.1. Let A ∈ B(H). Then:

(a) W(A) lies in the closed disc of radius ‖A‖ centered at the origin.

(b) W(A) is always convex.

(c) W(αA + βI) = αW(A) +β where α and β are complex numbers.

(d) W(A) is invariant under a unitary operator.

(e) Numerical range of the unilateral shift is the open unit disc centered at
origin.
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(f) The closure of the numerical range of a normal operator is the convex hull
of its spectrum.

(g) W (A∗) = W (A) = {λ : λ ∈ W (A)}, where A∗ denotes the adjoint of
operator A and λ is the conjugate of complex number λ.

(h) w(A) ≤ ‖A‖ .

In this paper we obtain some results on the numerical ranges of weighted
composition operators. We show that the shape of the numerical range of a
weighted composition operator is influenced by the inducing functions.

2. Numerical Ranges of Weighted Composition Operators
Induced by Fixed Point Mappings

In this section we compute the numerical range of a weighted composition
operator Cθ, φ when each n ∈ φ(N) is a fixed point of φ. We first state and
prove the following lemma.

Lemma 2.1. Suppose Cθ, φ ∈ B(ℓ2(N)). Let φ : N → N be such that
#(φ−1({n1})) ≥ 2 for some fixed point n1 of φ. Then W (Cθ, φ

∣
∣
ℓ2(En1

)
) is closed

elliptical disc with focii at 0 and θ(n1), where En1
= φ−1({n1}).

Proof. Suppose n1 is a fixed point of φ and #(φ−1({n1})) ≥ 2. Let φ−1({n1})

= {n1, n2, ....., nk} for k ≥ 2. Take g = ‖θ‖2 en1
, where ‖θ‖2 =

√
√
√
√

k∑

i=1

∣
∣θ(ni)

∣
∣2

and h =
θ.χEn1

‖θ‖
2

, where χEn1
is the characteristic function of En1

. Then

Cθ, φ

∣
∣
ℓ2(En1

)
f = θ(n1)f(n1)en1

+ θ(n2)f(n1)en2
+ ....+ θ(nk)f(n1)enk

= f(n1) θ.χEn1

=< f, g > h for every f ∈ ℓ2(En1
),

where θ.χEn1
is the pointwise multiplication of functions and en(m) = δnm =

the Kronecker delta.
Hence by Proposition 2.5 of Bourdon and Shapiro [1] W (Cθ, φ

∣
∣
ℓ2(En1

)
) is

closed elliptical disc with focii at 0 and 〈h, g〉 = θ(n1). This completes the
proof.



640 M. Gupta, B.S. Komal

If each point of φ(N) is a fixed point of φ, then we can partition N into two
disjoints sets E1 and E2, where

E1 =
{

n ∈ N : n is a fixed point of φ having only one element in its preimage
}

and

E2 =
{

n ∈ N :

n is a fixed point of φ having more than one element in its preimage
}

.

For n ∈ E2, write Fn = φ−1({n}).
Theorem 2.2. Suppose Cθ, φ ∈ B(ℓ2(N)). Let φ : N → N be such that

each point of φ(N) is a fixed point of φ. Then

W (Cθ, φ) = Co



(
⋃

n∈E2

Dn) ∪ {θ(m) : m ∈ E1}



 ,

where Dn is closed elliptical disc with focii at 0 and θ(n).

Proof. It can be easily seen that N =




⋃

n∈E2

Fn



 ∪ E1. Therefore

ℓ2(N) =




∑

n∈E2

⊕ ℓ2(Fn)



 ⊕
(
ℓ2(E1)

)
,

Cθ, φ =




∑

n∈E2

⊕ Cθ, φ

∣
∣ℓ2(Fn)



⊕
(
Cθ, φ

∣
∣ℓ2(E1)

)

=




∑

n∈E2

⊕ Cθ, φ

∣
∣ℓ2(Fn)



⊕
(
Mθ

∣
∣ℓ2(E1)

)
.

Since the closure of the numerical range of a normal operator is the convex
hull of its spectrum and since σ(Mθ) = ranθ, it follows by Lemma 2.1 that

W (Cθ, φ) = Co








⋃

n∈E2

Dn



 ∪
{

ranθ
∣
∣
E1

}





= Co








⋃

n∈E2

Dn



 ∪
{

θ(m) : m ∈ E1

}



 .



NUMERICAL RANGES OF WEIGHTED COMPOSITION... 641

This proves the theorem.

Example 2.3. Let p ∈ N. Define a relation ∼ on N as follows: m ∼ n if
m ≡ n (modp). This relation will divide N into p distinct equivalence classes
namely 1̄, 2̄, ...., p̄. Define φ : N → N by φ(n) = p if n ∈ p̄ (p is the smallest

integer in the equivalence class p̄). Let θ : N → C be defined by θ(n) = e2iπ/p

n

whenever n ∈ p̄. Then Cθ, φ is a bounded operator and each point of φ(N) is
a fixed point of φ. Let Qm = φ−1({m}), where m is a fixed point of φ and

1 ≤ m ≤ p. Hence in view of Theorem 2.1, W (Cθ, φ) = Co

(
p
⋃

m=1

Qm

)

, where

Qm is closed elliptical disc with focii at 0 and θ(m) = e2iπ/m

m
.

Example 2.4. Let φ : N → N be defined by

φ(n) =







n, if n is odd number

n− 1, if n is an even number.

For n ∈ N, let θ : N → C be a bounded function. Then Cθ, φ is a bounded
operator.

Let E2n−1 = {2n− 1, 2n}. Then N =
∞⋃

n=1

E2n−1, ℓ
2(N) =

∞∑

n=1

⊕ ℓ2(E2n−1)

and Cθ, φ =

∞∑

n=1

Cθ, φ

∣
∣
ℓ2(E2n−1) .

For n = 1, the matrix of Cθ, φ

∣
∣
ℓ2(E2n−1) =





θ(1) 0

θ(2) 0



 . The eigenvalues of

Cθ, φ

∣
∣
ℓ2(E2n−1)

are θ(1) and 0 and the corresponding unit eigenvectors are

f =




θ(1)

√
∣
∣θ(1)

∣
∣2 +

∣
∣θ(2)

∣
∣2

,
θ(2)

√
∣
∣θ(1)

∣
∣2 +

∣
∣θ(2)

∣
∣2



 , and g = (0, 1) .

Now let r = |〈f, g〉| =
∣
∣θ(2)

∣
∣

√

∣
∣θ(1)

∣
∣
2

+
∣
∣θ(2)

∣
∣
2
,

√
1− r2 =

∣
∣θ(1)

∣
∣

√

∣
∣θ(1)

∣
∣
2

+
∣
∣θ(2)

∣
∣
2
.

Hence by Remark 2.4 of Bourdon and Shapiro [1], W (Cθ, φ

∣
∣
ℓ2(E1)

) is a closed

elliptical disc with foci at 0 and θ(1), major axis =

√
∣
∣θ(1)

∣
∣2 +

∣
∣θ(2)

∣
∣2 and

minor axis =
∣
∣θ(2)

∣
∣. In a similar manner we can show that W

(

Cθ, φ

∣
∣
ℓ2(E2n−1)

)
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is a closed elliptical disc D2n−1 with foci at 0 and θ(2n − 1), major axis =
√
∣
∣θ(2n− 1)

∣
∣2 +

∣
∣θ(2n)

∣
∣2 and minor axis =

∣
∣θ(2n)

∣
∣.

Hence W (Cθ,φ) =

∞⋃

n=1

W
(

Cθ, φ

∣
∣
ℓ2(E2n−1)

)

.

= Co

( ∞⋃

n=1

D2n−1

)

.

In particular, if we take

θ(n) =







5 if n = 1
12 if n = 2
9 if n = 3
40 if n = 4
13 if n = 5
84 if n = 6
17 if n = 7
144 if n = 8
500

n(n+1) if n ≥ 9

,

then the shape of the numerical range is as shown in Figure 1.

Figure 1
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3. Numerical Ranges of Weighted Composition Operators
Induced by Non-Fixed Point Mappings

In this section we obtain the numerical ranges of weighted composition opera-
tors when φ and φ2 do not have any fixed point.

Lemma 3.1. Suppose Cθ, φ ∈ B(ℓ2(N)). Let φ : N → N be such that
#(φ−1({n})) ≥ 2 for some n ∈ N and n is neither a fixed point of φ nor of φ2.
Then

W
(

Cθ,φ

∣
∣
ℓ2(En)

)

=






α ∈ C : |α| ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2






,

where En = φ−1({n}) ∪ ({n}).

Proof. Suppose φ−1({n}) = {n1, n2, ....., nk}. Then for f ∈ ℓ2(En) with
‖f‖ = 1, we have

|〈Cθ, φf, f〉| =

∣
∣
∣
∣
∣
∣

∑

k∈φ−1({n})
θ(k)f(φ(k))f(k)

∣
∣
∣
∣
∣
∣

≤ |f(n)|
∑

k∈φ−1({n})
|θ(k)| |f(k)| .

Write |f(n)| = tn and |f(k)| = tk for each k ∈ φ−1({n}).

By the method of Lagrange’s multiplier, we maximize

tn
∑

k∈φ−1({n})
|θ(k)| tk

subject to the condition
∑

k∈φ−1({n})
t2k + t2n = 1.

Let

F = tn
∑

k∈φ−1({n})
|θ(k)| tk − λ




∑

k∈φ−1({n})
t2k + t2n − 1



 = 0. (1)

Then

∂F

∂tn
=

∑

k∈φ−1({n})
|θ(k)| tk − 2λtn = 0 (2)
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and

∂F

∂tk
= tn |θ(k)|−2λtk = 0 for all k ∈ φ−1({n}). (3)

Multiplying equation (3.2) by tn, equation (3.3) by tk and adding, we find
that

∑

k∈φ−1({n})
|θ(k)| tktn = λ. (4)

Substituting the value of tk from (3.3) in t2n +
∑

k∈φ−1({n})
t2k = 1, we obtain

t2n =
4λ2

4λ2 +
∑

k∈φ−1({n})
|θ(k)|2

. (5)

Solving (3.4) and (3.5) for λ, we get λ = 1
2

√ ∑

k∈φ−1({n})
|θ(k)|2.

Hence

W
(

Cθ,φ

∣
∣
ℓ2(En)

)

⊂






α ∈ C : |α| ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2






.

To prove the converse part, let

f(k) =







1√
2

θ(k)
2λ e−iβ , for k ∈ φ−1({n}), 0 ≤ β ≤ 2π,
1√
2
, for k = n,

0, for k /∈ En.

Then ‖f‖ = 1 and
〈

Cθ,φ

∣
∣
ℓ2(En)

f, f
〉

= 〈Cθ,φf, f〉 = f(n)
∑

k∈φ−1({n})
θ(k)f(k)

=
1√
2

∑

k∈φ−1({n})

1√
2

θ(k)θ(k)eiβ

2λ

=
1

2

√
∑

k∈φ−1({n})
|θ(k)|2 eiβ , 0 ≤ β ≤ 2π.
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Since numerical range is convex, we conclude that






α ∈ C : |α| ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2






⊂ W

(

Cθ,φ

∣
∣
ℓ2(En)

)

.

Hence

W
(

Cθ,φ

∣
∣
ℓ2(En)

)

=






α ∈ C : |α| ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2






.

Theorem 3.2. Let Cθ, φ ∈ B(ℓ2(N)). Suppose#(φ−1({n})) ≥ 2 for all n ∈
φ(N) and each point of φ(N) is neither a fixed point of φ nor of φ2. Then






α ∈ C :

∣
∣α
∣
∣ ≤ sup

n∈φ(N)

1

2

√
∑

k∈φ−1({n})
|θ(k)|2






⊂ W (Cθ, φ).

Proof. Take n ∈ φ(N). In view of Lemma 3.1, we obtain






α ∈ C :

∣
∣α
∣
∣ ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2






=W

(

Cθ, φ

∣
∣
ℓ2(En)

)

⊂W (Cθ, φ),

whereEn is as described in Lemma 3.1. Since the numerical range of an operator
is convex, so

Co




⋃

n∈N






α ∈ C :

∣
∣α
∣
∣ ≤ 1

2

√
∑

k∈φ−1({n})
|θ(k)|2









 ⊂ W (Cθ, φ)

and hence





α ∈ C :

∣
∣α
∣
∣ ≤ sup

n∈φ(N)

1

2

√
∑

k∈φ−1({n})
|θ(k)|2






⊂ W (Cθ, φ).
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Lemma 3.3. Suppose Cθ, φ ∈ B(ℓ2(N)). Let φ : N → N be such that
#(φ−1({n})) ≥ 2 for some n ∈ φ(N). Suppose n is not a fixed point of φ but
a fixed point of φ2. Then,

W
(
Cθ, φ

∣
∣
ℓ2(En)

)
⊂
{

α ∈ C : |α| ≤ 1

2

√
∑

k∈En

∣
∣θ2(k)

∣
∣+ 2 |θ(n)| |θ(φ(n))|

}

,

where En = φ−1({n}).

Proof. Let φ−1({n}) = {n1, n2, ......, nk} . Then φ(n) ∈ φ−1({n}) and so
φ(n) = nj for some 1 ≤ j ≤ k. For f ∈ ℓ2(En), consider

|〈Cθ, φf, f〉| =
∣
∣
∣
∣
∣

k∑

i=1

θ(ni)f(φ(ni))f(ni)

∣
∣
∣
∣
∣

≤
k∑

i 6=j,i=1

|θ(ni)| |f(n)| |f(ni)|+ |θ(nj)| |f(n)| |f(nj)|

+ |θ(n)| |f(nj)| |f(n)| . (6)

Write |f(n)| = tn, |f(ni)| = tni , |f(nj)| = tnj . This yields that

∣
∣
∣

〈

Cθ, φ

∣
∣
ℓ2(En)

f, f
〉∣
∣
∣ ≤

k∑

i 6=j,i=1

|θ(ni)| tntni + |θ(nj)| tntnj + |θ(n)| tnj tn.

By the method of Lagrange’s multiplier, we maximize

k∑

i 6=j, i=1

|θ(ni)| tntni + |θ(nj)| tntnj + |θ(n)| tnj tn

subject to the condition

k∑

i=1

t2ni
+ t2n = 1.

Proceeding in a similar manner as in Lemma 3.1, we obtain

λ =
1

2

√
∑

k∈En

∣
∣θ2(k)

∣
∣ +
∣
∣θ2(n)

∣
∣+ 2 |θ(n)| |θ(φ(n))|.
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Therefore,

W
(

Cθ,φ

∣
∣
ℓ2(En)

)

⊂
{

α ∈ C : |α| ≤ 1

2

√
∑

k∈En

∣
∣θ2(k)

∣
∣+
∣
∣θ2(n)

∣
∣+ 2 |θ(n)| |θ(φ(n))|

}

.

Theorem 3.4. Suppose Cθ, φ ∈ B(ℓ2(N)). Let φ : N → N be such that
#
(
φ−1({n})

)
≥ 2 for each n ∈ φ(N). Suppose each point of φ(N) is not a fixed

point of φ but a fixed point of φ2. Then,

W (Cθ, φ) ⊂






α ∈ C :

∣
∣α
∣
∣ ≤ sup

n

1

2

√
∑

k∈En

|θ(k)|2 + 2
∣
∣θ(n)

∣
∣
∣
∣θ(φ(n))

∣
∣






,

where En = φ−1({n}).

Proof. By an application of Lemma 3.3,

W (Cθ, φ

∣
∣
ℓ2(En)

) ⊂






α ∈ C :

∣
∣α
∣
∣ ≤ 1

2

√
∑

k∈En

|θ(k)|2 + 2
∣
∣θ(n)

∣
∣
∣
∣θ(φ(n))

∣
∣







and hence

W (Cθ, φ) ⊂






α ∈ C :

∣
∣α
∣
∣ ≤ sup

n

1

2

√
∑

k∈En

|θ(k)|2 + 2
∣
∣θ(n)

∣
∣
∣
∣θ(φ(n))

∣
∣






.

Theorem 3.5. Let Cθ, φ ∈ B(ℓ2(N)). Suppose φk has no fixed point for
any k ∈ N and lim

n→∞
θ(n) = ‖θ‖∞. Then,

{
λ ∈ C :

∣
∣λ
∣
∣ < ‖θ‖∞

}
⊂ W (Cθ, φ) ⊂

{

λ ∈ C :
∣
∣λ
∣
∣

< sup
n∈N

√
∑

m∈φ−1({n})
|θ(m)|

}

.

The equality holds if φ is an injection.
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Proof. We shall divide the proof in two steps:

Step I : Suppose there exists n1 ∈ N s.t φ−1({n1}) is empty. Write φk(n1) =
nk+1. Let En1

= {nk : k ∈ N}. Then En1
is an infinite subset of N. It is easy

to see that C∗
θ, φℓ

2(En1
) ⊂ ℓ2(En1

). Define S : ℓ2(En1
) → ℓ2(N) by S(enk

) = ek
for every k ∈ N. Clearly S is a unitary operator and C∗

θ, φ

∣
∣
ℓ2(En1

)
= S−1US,

where U is the unilateral shift operator with weights
{

θ(n) : n ∈ E1

}

. Hence

by Theorem 1(i) of Tam [8],

W
(

C∗
θ, φ

∣
∣
ℓ2(En1

)

)

= W (U) =

{

λ ∈ C :
∣
∣λ
∣
∣ < sup

n∈En1

∣
∣θ(n)

∣
∣

}

or that

W
(

Cθ, φ

∣
∣
ℓ2(En1

)

)

=

{

λ ∈ C :
∣
∣λ
∣
∣ < sup

n∈En1

∣
∣θ(n)

∣
∣

}

.

Consequently,

{

λ ∈ C :
∣
∣λ
∣
∣ < sup

n∈En1

∣
∣θ(n)

∣
∣

}

⊂ W (Cθ, φ) .

It follows that if En1
= N, then

{
λ ∈ C :

∣
∣λ
∣
∣ < ‖θ‖∞

}
⊂ W (Cθ, φ) ⊂

{

λ ∈ C :
∣
∣λ
∣
∣

<

√

sup
n∈N

∑

m∈φ−1({n})

∣
∣θ(m)

∣
∣2

}

. (7)

Step II: If φ−1({n}) is nonempty for every n ∈ N, then for n0 ∈ N, write
φk(n0) = nk and let n−k ∈ N to be s.t. φk(n−k) = n0.

Let Fn0
= {nk : k ∈ Z}. Define S : ℓ2(Fn0

) → ℓ2(Z) by S(enk
) = ek. Then

C∗
θ, φ

∣
∣
ℓ2(Fn0

)
= S−1WS, where W is the bilateral weighted shift with shifts

{

θ(n) : n ∈ Fn0

}

. Hence by Theorem 1(ii) of Tam [8],

W
(

C∗
θ, φ

∣
∣
ℓ2(Fn0

)

)

=

{

λ ∈ C :
∣
∣λ
∣
∣ < sup

n∈Fn0

∣
∣θ(n)

∣
∣

}



NUMERICAL RANGES OF WEIGHTED COMPOSITION... 649

or that

W
(

Cθ, φ

∣
∣
ℓ2(Fn0

)

)

=
{
λ ∈ C :

∣
∣λ
∣
∣ < sup

n∈Fn0

∣
∣θ(n)

∣
∣
}
.

As n → ∞, |θ(n)| → ‖θ‖∞ we can conclude that

{
λ ∈ C :

∣
∣λ
∣
∣ < ‖θ‖∞

}
⊂ W (Cθ, φ) ⊂

{

λ ∈ C :
∣
∣λ
∣
∣

<

√

sup
n∈φ(N)

∑

m∈φ−1({n})

∣
∣θ(m)

∣
∣2

}

.

Let G =
{

Oφ(n) : n ∈ N and φ−1({m}) is empty for some m ∈ Oφ(n)
}

and H = N −G.

Clearly, ℓ2(G) =
∑

m∈G and φ−1({m})=φ

⊕ ℓ2(Em), ℓ2(H) =
∑

p∈H
⊕ ℓ2(Fp) and

ℓ2(N) = ℓ2(G) ⊕ ℓ2(H).

From the first part of the proof we can conclude that

{
λ ∈ C :

∣
∣λ
∣
∣ < ‖θ‖∞

}
⊂ W (Cθ, φ) ⊂

{

λ ∈ C :
∣
∣λ
∣
∣

<

√

sup
n∈N

∑

m∈φ−1({n})

∣
∣θ(m)

∣
∣2

}

. (8)

If φ is injective, then

‖Cθ, φ‖ = ‖θ‖∞
and hence

W (Cθ, φ) ⊂ {λ ∈ C :
∣
∣λ
∣
∣ < ‖θ‖∞}.

Thus equality holds in view of (3.7) and (3.8).
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