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Abstract: In this paper, we explore a new construction technique for g-ary
Hamming codes [q + 1,q — 1, 3] for » = 2 and ¢ > 3 over GF(q).

We also establish its perfectness and investigate its duality by using the
MDS property.
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1. Introduction

As binary codes are based on two symbols 0 and 1 and a g-ary code is based
on ¢-symbols 0,1,2,...,¢g—1. For d = r + 1 and size of the code N = ¢*.
These codes are called MDS codes since they have maximum possible distance
for given code size N and codeword length n [6].

According to Peterson et al. [4], every residue class modulo ¢ contains
either 0 or a positive integer less than q. Zero is an element of the ideal and
each positive integer less than ¢ is in a distinct residue class. It follows from the
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above theorem that the list {0}, {1}, {2},... {¢—1} includes each class once and
only once. Another important theorem [4] gives the concept of prime fields or
Galois field of g elements which we consider throughout this paper. According
to the theorem, residue classes of integers modulo any positive prime integer ¢
from a field of ¢ elements known as Galois field GF(q).

A linear code of length n, rank k£ and minimum weight d is called [n, k, d]
code. If V is a linear code with minimum distance d, then V can correct
t= L%J or fewer errors and conversely.

In this paper we consider only non-binary codes over GF(q), ¢ > 3. It
is organized as follows: We give detailed description of the construction of a
[¢+1,q— 1] linear code, V' in Section 2. We show that the code V' and its dual
V+ are MDS code in Section 3. In Section 4, we prove that [¢+1,¢—1,3] linear
code is a perfect code, whereas in Section 5, we give the decoding procedure.
This is followed by an example for ¢ = 3 in Section 6. Open problems are given
in Section 7.

2. Construction

As we know, GF(q) is a Galois field of order ¢, ¢ > 3. The Cartesian product
GF(q) x GF(q) comprises the distinct ¢? pairs, i.e.

|GF(q) x GF(q)| = ¢*.

The number of non-zero elements of GF(q) x GF(q) = ¢*> — 1. We can split the
(¢*> — 1) non-zero elements into (g + 1) disjoint sets:

S1=(1,1),(2,2),...,(¢—1L¢—1),

S2=1(1,2),(2,4),...,(¢—1,2(¢ — 1)),
Sq—2=(1,4—2),(2,2¢ —4),....(¢—1,(g — 2)(g — 1)),
Sg—1=(1,4—=1),(2,2¢ = 2),..., (¢ — 1,(g — 1)7),

Sq=(1,0),(2,0),...,(¢—1,0),
Sg+1=1(0,1),(0,2),...,(0,¢ — 1),

where any two pairs of the same set are multiples of each other over GF(q).
For the construction of parity check matrix, we take (¢ + 1) pairs one from
each set namely (1,1),(1,2),...,(1,0),(0,1) from Sy, S, ..., Sq+1 respectively
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and use their transposes to form the following 2 x (¢ 4 1) parity check matrix

H:
11 - 1 10
H_[l 2 - g—10 1] 21)
or
111 - 1
H‘[123--- q—112]‘

Let V = {z = (z1,22,...,7441) € GF(¢)?" | HxT = 0}. Then V is a subspace
of GF(q)?*! and therefore a linear code over GF(q). Further, Hz” = 0 implies
that

T1+To+ ...+ Ty +24=0 (2.2)
x1+2x2+ ...+ (¢—1)xg—1 + 2441 =0 .
which then yields:
rg=(q—1z1+(g—1)aa+...... + (g — 1)xg_1,
Tor1=(@—1Dz1+(¢—2)z2+...... + 2242+ 241,
since x1,x2,...,%4—1 are independent variables and z, and 441 are dependent
variables.
We can assign to x1,x2,...,24—1 conveniently chosen values. Thus we set
z1=land xg =23 =... =241 =0 and get v, =¢—1 and 441 = ¢ — 1.
Thus, (1,0,0,...,0,g —1,¢ — 1) is a solution of (2.2). Similarly, (0,1, ...,
0,¢g—1,q—-2), (0,0,1,...,0,¢g —1,g —3)...... and (0,0,0,...,1,¢ —1,1) are

(¢—1) codewords of V. Since they are independent, we can use these codewords
to form a (¢ — 1) x (¢ + 1) generator matrix G of V given by

1 0 -+ 0 ¢g—1 ¢qg—1]
1 - 0 g—1 g-—2
G=100 - 0 g—1 ¢g—3
o0 - 1 ¢g—1 ]
or
_ o1 g-17
qg—1 q—=2

G=|1I,.1 91 ¢-3

qg—1 1
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By this way, we have shown the construction of the [¢+ 1,q — 1, d] code for
all values of ¢ > 3.

3. MDS Code

In order to show that [¢ + 1, — 1,d] code is a MDS code, we have to show
that the minimum weight of the code is 3. As we know that the number of
codewords in a g-ary code is always the power of ¢. If the rank of the parity
check matrix H is r = n — k, then the number of codewords is ¢" .

Singleton [6] has proved the following theorem that relates distance with
the columns of the check matrix H.

Theorem 3.1. A linear g-ary code with parity check matrix H has (min-
imum) g-ary distance d if and only if

(i) every subset of d — 1 columns of H is linearly independent,

(ii) Subset of d columns of H is linearly dependent.

Corollary 3.1. For a linear g-ary code, d = r + 1 if and only if every set
of r columns of its parity check matrix H is linearly independent.

Corollary 3.2. If the parity check matrix of a linear q-ary code is of the

form H =[] A I ], then d = r + 1 if and only if every square submatrix of
order j within A where 1 < j < min(r, k) has a non zero determinant.

Discussion

We can write the parity check matrix H in equation (2.1) as

1 11 --- 1 1 0
H_[123--- q—101]'
We can write H as
H=[A T],

1 1 1 0
WhereA—[1 q_l}andl—[o 1].

[N
W =
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Every pair of two columns of H is linearly independent and every column
of A can be formed by the linear combination of columns of I.

Since every square submatrix of order 1 and 2 within A has a non-zero
determinant. So, by Theorem 3.1, Corollary 3.1 and Corollary 3.2, the minimum
distance d of H is 3 and d =n — k + 1.

Hence the linear code V' is a MDS code. We also know that dual of a MDS
code is also MDS. So, the dual of V, denoted by V1, is also a MDS code.

The minimum weight of the [¢ + 1,¢ — 1] Hamming code V' over GF(q) is
3. So, is a single error correcting code.

It follows from the fact that if d is the minimum weight of a code V. Then
V' can correct t = L%J or fewer errors.

Since the minimum distance d of V' is 3. Then t = L?’Q;IJ =1.

Let V: = {u € GF(¢)" |u-v=0Yv eV}

Then V- is called the dual code of V. We know that dual of MDS code is
also MDS code. So, V' is a [g+1, 2] code with minimum distance ¢g+1—2+1 = ¢.

Thus, V- can correct % errors.

So, we have shown that the [¢ + 1,¢ — 1, 3] code, V' and its dual are MDS
codes over GF(q) for all values of ¢ > 3.

4. Perfect Code

An [n, k] linear code V' of minimum weight d = 2t 4+ 1 over GF(q) is said to be
perfect if the code V' will correct all error patterns of weight less than or equal
to t and no other error patterns.
Thus, we can say that a [¢ + 1,q — 1, 3] g-ary Hamming code is said to be
perfect if it corrects all error pattern of weight 1 and no other error patterns.
Now, we take distinct non-zero (¢ + 1)-tuple (error patterns) in which only
one element is non-zero and others are zero, for all
1 <i<¢—1 and find distinct (¢ + 1) syndrome for each
1<i<qg-—1.

Error-Pattern Syndrome
i (1,0,0,...,0,0,0,0) | 4 (11)
i (0,1,0,...,0,0,0,0) | 4 (12)

i (0,0,0,...,0,1,0,0) |i (1 ¢—1)
i (0,0,0,...,0,0,1,0) | 4 (10)
i (0,0,0,...,0,0,0,1) | 4 (01)
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Here, total number of distinct non-zero error-patterns =

(@-1(@+1)=¢*-1L
Hence, by the condition given above, code V is a perfect code.

5. Decoding Algorithm

We conclude this paper by presenting decoding procedure for ¢g-ary [¢+1,¢—1, 3]
code in the following steps:

Step 1: Form H.

Step 2: Compute Hr”, where r is the received vector.

(a) If Hr" = a - j* column of H, where j € {1,2,...,q — 1} and
a € GF(q) such that o # 0, the error has occurred in the the
4 co-ordinate of the sent code word, v and the error vector, e
has field element « in its j* co-ordinate and zeros in other co-
ordinates.
So, e =(0,0,...,,...,0,0), where « is the j*"
co-ordinate of e.

(b) If HrT = 0, then there is no error,

i.e. ris a codeword of V.

Suppose we want to send the code vector v = (1,1, 1,...,1,0) which is received
at the receiving end as r = (1,1,3,1,...,1,0). Then error vector, e =r — v =
(0,0,2,0,...,0). Now, to recover the code vector v from r.

We compute Hr' as follows:
Hrl = H(v+e)T.
Since v € ker H, then HvT = [0 0].
Hr'=1[0 0] +2[1 3]=2[1 3]
=23 column of H .

This shows that error vector e contains the field element 2 in the 3'4 co-ordinate
and error has occurred in the 3' co-ordinate of the code vector v. Since e =
r — v, we obtain v from r — e.
v=r—e=(1,1,3,1,1,...,1,0) — (0,0,2,0,0,...,0).
= v=(1,1,1,1,...,1,0).
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6. Conclusion

In this section, we discuss our work with the help of an illustration for ¢ = 3
which follows as:

GF(3) comprises 0,1 and 2.

| GF(3) x GF(3)| = 9. The number of non-zero elements of GF(3) x GF(3) =
9-1=28.

We can split the 8 non-zero elements into 4 disjoint sets:

S1=(1,1),(2,2), S2=(1,2),(2,1), S3=(1,0),(2,0), S4=(0,1),(0,2).

Now, we form parity-check matrix by taking 4 pairs, one from each set,
namely (1,1),(1,2),(1,0),(0,1) from Sy, Sa, S3, Sy, respectively and use their
transpose to form the following 2 x 4 parity-check matrix H;:

11 10
Hi= [1 2 0 1]‘
Let Vi = {x = (w1, 72,73, 24) € GF(3)* | H12? = 0}.
HizT = 0 implies that

1+ 29 +23=0
1+ 229 + 24 =0

which then yields

€r3 = 21 + 2$2,

Tq4 = 221 + x9.

Here, 1 and zo are independent variables and z3, x4 are dependent variables.
Setting x; = 1 and x9 = 0, we get (1,0,2,2) is a solution of (6.1) and by

setting 1 = 0 and xo = 1, we get (0, 1,2, 1) as another solution of (6.1).
(1,0,2,2) and (0, 1,2, 1) are 2 codewords of V7 and form its generator matrix

Gi.
Gl—[l 0 2 2].

01 2 1

Vi, [4,2,3] code is a MDS code and corrects 1 error.
VIL, [4,2,3] code is also a MDS code which can correct 1 error.
Now we discuss the perfectness of Vi by Error-Pattern Syndrome table:
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Error-Pattern | Syndrome || Error-Pattern | Syndrome
1000 11 2000 22
0100 12 0200 21
0010 10 0020 20
0001 01 0002 02

The total non-zero distinct error pattern = 8 = 32 — 1. Hence, V] is a

perfect code over GF(3).

Elora et al. [1] have already proved the perfectness of code for ¢ = 5 by
another method. We have also verified the above results for ¢ = 7,11, 13.

7. Open Problem

In this paper we have shown a general construction method of g-ary Hamming
codes for prime field/Galois field. We have not been able to justify the result
for the field of polynomials over GF(g) modulo an irreducible polynomial of
degree m which is known as the Galois field of ¢ elements of GF(¢™).
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