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Abstract: In this paper, we explore a new construction technique for q-ary
Hamming codes [q + 1, q − 1, 3] for r = 2 and q ≥ 3 over GF(q).

We also establish its perfectness and investigate its duality by using the
MDS property.
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1. Introduction

As binary codes are based on two symbols 0 and 1 and a q-ary code is based
on q-symbols 0, 1, 2, . . . , q − 1. For d = r + 1 and size of the code N = qk.
These codes are called MDS codes since they have maximum possible distance
for given code size N and codeword length n [6].

According to Peterson et al. [4], every residue class modulo q contains
either 0 or a positive integer less than q. Zero is an element of the ideal and
each positive integer less than q is in a distinct residue class. It follows from the
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above theorem that the list {0}, {1}, {2}, . . . {q−1} includes each class once and
only once. Another important theorem [4] gives the concept of prime fields or
Galois field of q elements which we consider throughout this paper. According
to the theorem, residue classes of integers modulo any positive prime integer q
from a field of q elements known as Galois field GF(q).

A linear code of length n, rank k and minimum weight d is called [n, k, d]
code. If V is a linear code with minimum distance d, then V can correct
t =

⌊

d−1
2

⌋

or fewer errors and conversely.

In this paper we consider only non-binary codes over GF(q), q ≥ 3. It
is organized as follows: We give detailed description of the construction of a
[q+1, q− 1] linear code, V in Section 2. We show that the code V and its dual
V ⊥ are MDS code in Section 3. In Section 4, we prove that [q+1, q−1, 3] linear
code is a perfect code, whereas in Section 5, we give the decoding procedure.
This is followed by an example for q = 3 in Section 6. Open problems are given
in Section 7.

2. Construction

As we know, GF(q) is a Galois field of order q, q ≥ 3. The Cartesian product
GF(q)×GF(q) comprises the distinct q2 pairs, i.e.

|GF(q)×GF(q)| = q2 .

The number of non-zero elements of GF(q)×GF(q) = q2 − 1. We can split the
(q2 − 1) non-zero elements into (q + 1) disjoint sets:

S1 = (1, 1), (2, 2), . . . , (q − 1, q − 1),

S2 = (1, 2), (2, 4), . . . , (q − 1, 2(q − 1)),

...

Sq−2 = (1, q − 2), (2, 2q − 4), . . . , (q − 1, (q − 2)(q − 1)),

Sq−1 = (1, q − 1), (2, 2q − 2), . . . , (q − 1, (q − 1)2),

Sq = (1, 0), (2, 0), . . . , (q − 1, 0),

Sq+1 = (0, 1), (0, 2), . . . , (0, q − 1),

where any two pairs of the same set are multiples of each other over GF(q).

For the construction of parity check matrix, we take (q + 1) pairs one from
each set namely (1, 1), (1, 2), . . . , (1, 0), (0, 1) from S1, S2, . . . , Sq+1 respectively
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and use their transposes to form the following 2 × (q + 1) parity check matrix
H:

H =

[

1 1 · · · 1 1 0
1 2 · · · q − 1 0 1

]

(2.1)

or

H =

[

1 1 1 · · · 1
1 2 3 · · · q − 1

I2

]

.

Let V = {x = (x1, x2, . . . , xq+1) ∈ GF(q)q+1 | HxT = 0}. Then V is a subspace
of GF(q)q+1 and therefore a linear code over GF(q). Further, HxT = 0 implies
that

x1 + x2 + . . .+ xq−1 + xq = 0

x1 + 2x2 + . . . + (q − 1)xq−1 + xq+1 = 0

}

(2.2)

which then yields:

xq = (q − 1)x1 + (q − 1)x2 + . . . . . . + (q − 1)xq−1,

xq+1 = (q − 1)x1 + (q − 2)x2 + . . . . . . + 2xq−2 + xq−1,

since x1, x2, . . . , xq−1 are independent variables and xq and xq+1 are dependent
variables.

We can assign to x1, x2, . . . , xq−1 conveniently chosen values. Thus we set
x1 = 1 and x2 = x3 = . . . = xq−1 = 0 and get xq = q − 1 and xq+1 = q − 1.

Thus, (1, 0, 0, . . . , 0, q − 1, q − 1) is a solution of (2.2). Similarly, (0, 1, . . .,
0, q − 1, q − 2), (0, 0, 1, . . . , 0, q − 1, q − 3) . . . . . . and (0, 0, 0, . . . , 1, q − 1, 1) are
(q−1) codewords of V . Since they are independent, we can use these codewords
to form a (q − 1)× (q + 1) generator matrix G of V given by

G =















1 0 · · · 0 q − 1 q − 1
0 1 · · · 0 q − 1 q − 2
0 0 · · · 0 q − 1 q − 3
...

...
...

...
...

0 0 · · · 1 q − 1 1















or

G =















Iq−1

q − 1 q − 1
q − 1 q − 2
q − 1 q − 3
...

...
q − 1 1















.
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By this way, we have shown the construction of the [q+1, q− 1, d] code for
all values of q ≥ 3.

3. MDS Code

In order to show that [q + 1, q − 1, d] code is a MDS code, we have to show
that the minimum weight of the code is 3. As we know that the number of
codewords in a q-ary code is always the power of q. If the rank of the parity
check matrix H is r = n− k, then the number of codewords is qn−k.

Singleton [6] has proved the following theorem that relates distance with
the columns of the check matrix H.

Theorem 3.1. A linear q-ary code with parity check matrix H has (min-

imum) q-ary distance d if and only if

(i) every subset of d− 1 columns of H is linearly independent,

(ii) Subset of d columns of H is linearly dependent.

Corollary 3.1. For a linear q-ary code, d = r + 1 if and only if every set

of r columns of its parity check matrix H is linearly independent.

Corollary 3.2. If the parity check matrix of a linear q-ary code is of the

form H = [ A I ], then d = r + 1 if and only if every square submatrix of

order j within A where 1 ≤ j ≤ min(r, k) has a non zero determinant.

Discussion

We can write the parity check matrix H in equation (2.1) as

H =

[

1 1 1 · · · 1 1 0
1 2 3 · · · q − 1 0 1

]

.

We can write H as

H = [ A I ],

where A =

[

1 1 1 · · · 1
1 2 3 · · · q − 1

]

and I =

[

1 0
0 1

]

.
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Every pair of two columns of H is linearly independent and every column
of A can be formed by the linear combination of columns of I.

Since every square submatrix of order 1 and 2 within A has a non-zero
determinant. So, by Theorem 3.1, Corollary 3.1 and Corollary 3.2, the minimum
distance d of H is 3 and d = n− k + 1.

Hence the linear code V is a MDS code. We also know that dual of a MDS
code is also MDS. So, the dual of V , denoted by V ⊥, is also a MDS code.

The minimum weight of the [q + 1, q − 1] Hamming code V over GF(q) is
3. So, is a single error correcting code.

It follows from the fact that if d is the minimum weight of a code V . Then
V can correct t =

⌊

d−1
2

⌋

or fewer errors.
Since the minimum distance d of V is 3. Then t =

⌊

3−1
2

⌋

= 1.
Let V ⊥ = {u ∈ GF(q)q+1 | u · v = 0 ∀ v ∈ V }.
Then V ⊥ is called the dual code of V . We know that dual of MDS code is

also MDS code. So, V ⊥ is a [q+1, 2] code with minimum distance q+1−2+1 = q.
Thus, V ⊥ can correct q−1

2 errors.
So, we have shown that the [q + 1, q − 1, 3] code, V and its dual are MDS

codes over GF(q) for all values of q ≥ 3.

4. Perfect Code

An [n, k] linear code V of minimum weight d = 2t+ 1 over GF(q) is said to be
perfect if the code V will correct all error patterns of weight less than or equal
to t and no other error patterns.

Thus, we can say that a [q + 1, q − 1, 3] q-ary Hamming code is said to be
perfect if it corrects all error pattern of weight 1 and no other error patterns.

Now, we take distinct non-zero (q +1)-tuple (error patterns) in which only
one element is non-zero and others are zero, for all
1 ≤ i ≤ q − 1 and find distinct (q + 1) syndrome for each
1 ≤ i ≤ q − 1.

Error-Pattern Syndrome

i (1, 0, 0, . . . , 0, 0, 0, 0) i (1 1)

i (0, 1, 0, . . . , 0, 0, 0, 0) i (1 2)
...

...

i (0, 0, 0, . . . , 0, 1, 0, 0) i (1 q − 1)

i (0, 0, 0, . . . , 0, 0, 1, 0) i (1 0)

i (0, 0, 0, . . . , 0, 0, 0, 1) i (0 1)
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Here, total number of distinct non-zero error-patterns =
(q − 1)(q + 1) = q2 − 1.

Hence, by the condition given above, code V is a perfect code.

5. Decoding Algorithm

We conclude this paper by presenting decoding procedure for q-ary [q+1, q−1, 3]
code in the following steps:

Step 1: Form H.

Step 2: Compute HrT , where r is the received vector.

(a) If HrT = α · jth column of H, where j ∈ {1, 2, . . . , q − 1} and
α ∈ GF(q) such that α 6= 0, the error has occurred in the the
jth co-ordinate of the sent code word, v and the error vector, e
has field element α in its jth co-ordinate and zeros in other co-
ordinates.

So, e = (0, 0, . . . , α, . . . , 0, 0), where α is the jth

co-ordinate of e.

(b) If HrT = 0, then there is no error,
i.e. r is a codeword of V .

Suppose we want to send the code vector v = (1, 1, 1, . . . , 1, 0) which is received
at the receiving end as r = (1, 1, 3, 1, . . . , 1, 0). Then error vector, e = r − v =
(0, 0, 2, 0, . . . , 0). Now, to recover the code vector v from r.

We compute HrT as follows:

HrT = H(v + e)T .

Since v ∈ ker H, then HvT =
[

0 0
]

.

HrT =
[

0 0
]

+ 2
[

1 3
]

= 2
[

1 3
]

= 2 · 3rd column of H .

This shows that error vector e contains the field element 2 in the 3rd co-ordinate
and error has occurred in the 3rd co-ordinate of the code vector v. Since e =
r − v, we obtain v from r − e.

v = r − e = (1, 1, 3, 1, 1, . . . , 1, 0) − (0, 0, 2, 0, 0, . . . , 0).

⇒ v = (1, 1, 1, 1, . . . , 1, 0).



NEW CONSTRUCTION TECHNIQUE FOR... 805

6. Conclusion

In this section, we discuss our work with the help of an illustration for q = 3
which follows as:

GF(3) comprises 0, 1 and 2.

|GF(3)×GF(3)| = 9 . The number of non-zero elements of GF(3)×GF(3) =
9− 1 = 8.

We can split the 8 non-zero elements into 4 disjoint sets:

S1=(1, 1), (2, 2), S2=(1, 2), (2, 1), S3=(1, 0), (2, 0), S4=(0, 1), (0, 2).

Now, we form parity-check matrix by taking 4 pairs, one from each set,
namely (1, 1), (1, 2), (1, 0), (0, 1) from S1, S2, S3, S4, respectively and use their
transpose to form the following 2× 4 parity-check matrix H1:

H1 =

[

1 1 1 0
1 2 0 1

]

.

Let V1 = {x = (x1, x2, x3, x4) ∈ GF(3)4 | H1x
T = 0}.

H1x
T = 0 implies that

x1 + x2 + x3 = 0

x1 + 2x2 + x4 = 0

}

(6.1)

which then yields

x3 = 2x1 + 2x2,

x4 = 2x1 + x2.

Here, x1 and x2 are independent variables and x3, x4 are dependent variables.

Setting x1 = 1 and x2 = 0, we get (1, 0, 2, 2) is a solution of (6.1) and by
setting x1 = 0 and x2 = 1, we get (0, 1, 2, 1) as another solution of (6.1).

(1, 0, 2, 2) and (0, 1, 2, 1) are 2 codewords of V1 and form its generator matrix
G1.

G1 =

[

1 0 2 2
0 1 2 1

]

.

V1, [4, 2, 3] code is a MDS code and corrects 1 error.

V ⊥
1 , [4, 2, 3] code is also a MDS code which can correct 1 error.

Now we discuss the perfectness of V1 by Error-Pattern Syndrome table:
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Error-Pattern Syndrome Error-Pattern Syndrome

1000 1 1 2000 2 2

0100 1 2 0200 2 1

0010 1 0 0020 2 0

0001 0 1 0002 0 2

The total non-zero distinct error pattern = 8 = 32 − 1. Hence, V1 is a
perfect code over GF(3).

Elora et al. [1] have already proved the perfectness of code for q = 5 by
another method. We have also verified the above results for q = 7, 11, 13.

7. Open Problem

In this paper we have shown a general construction method of q-ary Hamming
codes for prime field/Galois field. We have not been able to justify the result
for the field of polynomials over GF(q) modulo an irreducible polynomial of
degree m which is known as the Galois field of qm elements of GF(qm).
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