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Abstract: Computing solutions of convection–diffusion equations is an im-
portant and challenging problem from the numerical point of view. We present
in this work a numerical scheme to study this problem. The scheme combines a
stabilized finite element method introduced in [Serghini Mounim, A stabilized
finite element method for convection–diffusion problems, Mumer. Methods Par-
tial Differential Eq 28: 1916-1943, 2012], with an adaptive mesh refinement
procedure which is based on the residual a posteriori error estimators. It is
worthwhile to point out that the numerical results indicate that the stabiliza-
tion parameter introduced in [Serghini Mounim, A stabilized finite element
method for convection–diffusion problems, Numer. Methods Partial Differen-

tial Eq. 28 (2012), 1916-1943] gives much better results than the standard
Streamline upwind/Petrov–Galerkin (SUPG) one.
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1. Introduction

Scalar convection–diffusion problems govern a variety of physical phenomena.
The equation governing such natural phenomena is composed of a diffusive part
and a convective part which dominates in general. The mathematical analy-
sis and the numerical solution of convection–dominated equations have been
of great interest over the last decades, for an overview of new developments
see Roos et al. [22]. The weaknesses, particularly in the convection dominated
regime, of classical Galerkin finite element methods to treat such problems have
focused attention on developing stable approximations. To enhance the stabil-
ity and accuracy, various stabilization techniques have been developed. Among
them, the most popular is the Streamline upwind/Petrov–Galerkin (SUPG) in-
troduced by Brooks and Hughes [9]. This stabilized method consists in adding
a local amount O(τK) of diffusion terms to the Galerkin formulation preserving
the consistency of the variational formulation (only in the convection direc-
tion). The accuracy is strongly connected to the parameters contained in the
additional terms. An important drawback of the method is that the amount
of added diffusion has to be tuned by a parameter τ . For an overview of these
successful approaches, see [11] and references therein.

Baiocchi et al. [2] and Brezzi et al. [3] showed that the SUPG method is
linked to the process of adding suitable bubble functions. The optimal value of
the streamline diffusion parameter τ is then related to the best choice of the bub-
ble shape. This last method, proposed by Brezzi–Russo [8], is called Residual–
Free Bubble (RFB). The RFB method requires the solution of a boundary value
problem in each triangle K. However, the exact computation of this function is
as difficult as the original convection–diffusion problem itself. Approximations
of this function have been considered in some papers.

In a recent work, Serghini Mounim [24] proposed a new procedure for de-
riving a stabilized method which is “parameter-free” to solve the convection-
diffusion equation. This approach leads to a streamline–diffusion finite element
method with an explicit formula for the stability parameter that is capable of
adapting to all regimes.

Despite the recent progress there is still room for improvement. So we added
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to these stabilization techniques an adaptive mesh refinement which could pos-
sibly help to prevent the problem of sharp boundary layers. The use of a pos-

teriori error estimators for estimating the global error as well as for obtaining
information for adaptive mesh–refinement techniques is nowadays a standard
component in numerical codes for solving partial differential equations. During
the last decades, fundamental and general approaches for analyzing a posteriori
error estimators for finite element solutions of many classes of partial differen-
tial equations have been developed, see for example [26, 1, 21, 18] and references
therein.

The drawback with most of stabilized methods is that the solution layers
are not very well resolved, because of the numerical diffusion added to the
discretization. On the other hand, most of the standard error estimators involve
equivalence constants depending on negative powers of the diffusion parameter,
which lead to very poor results in advective dominated case. A way to overcome
these difficulties is to combine the efficiency of the stabilization techniques and
an adaptive mesh refinement procedure.

In this work, we introduce and analyze from the numerical point of view
an adaptive scheme to efficiently solve the convection–diffusion problem. We
perform several numerical experiments to show the effectiveness of our approach
to capture the inner and boundary layers. Furthermore, we show the superiority
of the RFB method compared to the SUPG method.

The paper is organized as follows. In Sections 2 and 3, the scalar convection–
diffusion equations and their discretization are presented with a short survey of
the stabilization techniques. Section 4 contains a description of the a posteriori

error estimators. In Section 5, we deal with a general presentation of numerical
results. The numerical tests with respect to the estimation of the global error
are presented in Section 5.1 and with respect to the adaptive mesh refinement
in Section 5.2. Finally, Section 6 presents some conclusions and prospects.

2. Scalar Convection–Diffusion Problem

Let Ω be a polygonal domain of R2 of boundary Γ = ΓD∪ΓN , with ΓD∩ΓN = ∅
and meas(ΓD) > 0. Let f ∈ L2(Ω), gD, gN ∈ L2(Γ). We consider the following
scalar convection-diffusion problem:







−div (ǫ∇u) + β ·∇u = f in Ω,
u = gD on ΓD,
ε∇u · n = gN on ΓN ,

(1)
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where ∇ and div denote the gradient and divergence operators respectively and
n the outward unit normal to Γ.

We shall assume that ǫ > 0 is a positive constant, the velocity field β ∈
(

W 1,∞(Ω)
)2

is such that div(β) = 0 and, for the sake of simplicity, we take
gD = 0 and gN = 0.

The variational formulation corresponding to (1) reads:

{

u ∈ V;

A(u, v) = L(v), ∀ v ∈ V,
(2)

where V =
{

v ∈ H1(Ω); v|ΓD
= 0

}

and

A(u, v) = ǫ

∫

Ω
∇u · ∇v +

∫

Ω
(β ·∇u)v, L(v) =

∫

Ω
fv.

The problem (2) fits into the Lax-Milgram framework. Both continuity on
V ×V and the V–ellipticity of the bilinear form A(., .) hold true (see, e.g., [20]).
This problem is then well posed for any ǫ > 0 and β, a velocity field, such that
div(β) = 0.

3. Standard Galerkin Finite Element Method and Stabilization
Techniques

For a finite element discretization of (2), the domain Ω is partitioned into a
finite number of non–overlapping elements K:

Ω =
⋃

K∈Th
K,

where Th is a regular family of triangles K. For any triangle K, hK is the
diameter (longest edge) of K, E is an edge of K and hE , the length of the edge
E. Let ∂K− and ∂K+ denote, respectively, the inflow and outflow parts of the
∂K:

∂K− = {x ∈ ∂K; β ·n(x) < 0} , ∂K+ = {x ∈ ∂K; β ·n(x) ≥ 0} .

The standard Galerkin approximation to the variational problem reads:

{

uL ∈ VL;

A(uL, vL) = L(vL), ∀vL ∈ VL,
(3)
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where the subspace VL of V consisting of continuous functions that are piecewise
polynomials on Th:

VL = { v ∈ V; v|K ∈ P1(K), ∀K ∈ Th },

and where P1(K) denotes the space of linear functions defined on the triangleK.

As mentioned in Introduction, despite the apparent simplicity of the prob-
lem (2), its numerical solution is still a challenge when advection terms are
strongly dominant. More precisely, the FE solution of (2) is characterized by
the local non–dimensional Péclet number:

PeK =
‖β ‖hK

2ǫ
, ‖β‖ = ‖β‖∞,K . (4)

In general, oscillatory solutions are observed for high Péclet, i.e., PeK ≫ 1;
for example, if there are any boundary layers which are not resolved by the
mesh. An oscillation–free solution cannot be achieved with the Galerkin finite
element method GFEM. As a remedy, particularly for the high PeK regime,
stabilized FEMs were proposed.

3.1. Streamline Upwind/Petrov–Galerkin (SUPG)

Following [9, 10], to ensure stability at high Péclet numbers (PeK ≫ 1), sta-
bilization terms should be added to the Galerkin variational formulation. The
SUPG method consists then of adding to the original bilinear form A(., .) and
linear form L(·) terms which introduce a suitable amount of artificial diffusion
in the streamline direction. For the convection diffusion problem (1), the SUPG
method reads:










uL ∈ VL;

A(uL, vL) +
∑

K∈Th
τ
supg
K

∫

K
(β ·∇uL − f) (β ·∇vL) = L(vL), ∀ vL ∈ VL,

where τ
supg
K ≥ 0 is a stabilization parameter. Several definitions for τ

supg
K

may be found in the literature, but its value is not determined precisely by the
available theory. One popular choice for the stabilizing parameter for contin-
uous piecewise linear finite elements on quasi-uniform mesh and element-wise
constant f is (see [10]):

τ
supg
K =

hK
2‖β ‖

(

coth(PeK )−
1

PeK

)

. (5)
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Since, limx→+∞(coth(x)− 1
x) = 1 and limx→0+

coth(x)−
1

x
x

=
1

3
, in practice

it is usual to use the asymptotic expressions of (5):

τ
supg
K =



















hK
2‖β ‖

if PeK ≥ 1, (convection–dominated),

h2K
12ǫ

if PeK < 1, (diffusion–dominated).

(6)

The reason for the popularity of the stabilization parameter (5) is that it
gives in one dimension a nodally exact solution and monotonicity preserving
approximant (see [10, 9]). However, the optimality property of (5) in one di-
mension does not generalize to the two-dimensional case, even for a constant
function f . Indeed, this parameter has been defined in the 2D case by a simple
analogy with the one-dimensional formula.

A way to intrinsically recover the value of τ
supg
K is to use the residual free

bubbles (RFB) methodology [8, 12, 23, 5], or the variational multiscale method
[16, 17].

3.2. Residual Free Bubbles (RFB) approach

3.2.1. General Methodology

Following [4], we write the Galerkin variational formulation of (1) without a
stabilizing term:

{

uh ∈ Vh;

A(uh, vh) = L(vh), ∀ vh ∈ Vh.
(7)

The RFB method consists in an unusual approximating space Vh:

Vh = VL ⊕Bh,

where Bh contains generic functions confined to the interior of the elements:

Bh =
⊕

K∈Th
H1

0 (K).

Consequently, the solution uh admits a unique decomposition into the sum of
linear piecewise polynomial uL and the bubble part ub:

uh = uL + ub, uL ∈ VL and ub =
∑

K∈Th
αKbK ∈ Bh, (8)
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where αK is a constant and bK denotes a bubble function. Note that uL is
the usual nodal interpolant of uh (macro–scale), while ub reflects the local
behaviour (micro–scale), which can be neglected without a significant loss of
accuracy. Using the splitting (8), and projecting (7) on the sub–spaces VL and
Bh , we get:







A(uL, vL) +A(ub, vL) = L(vL), ∀ vL ∈ VL,

A(uL, vb) +A(ub, vb) = L(vb), ∀ vb ∈ Bh.
(9)

As the divergence of the vector β is zero, considering the local character of the
bubble, one can easily show that (αK)K∈Th , the degrees of freedom associated
with bubbles, may be eliminated in the equations of (9) giving rise to the
following system containing only the linear part of the solution as unknown:

A(uL, vL) +
∑

K∈Th
τrfbK

∫

K
(β ·∇uL − f) (β ·∇vL) = L(vL), ∀vL ∈ VL. (10)

Following the RFB approach, proposed by Brezzi–Russo in [8], the parame-
ter which can be considered as quasi-optimal from the theoretical point of view
is given by:

τrfbK =
1

|K|

∫

K
bK , |K| = meas(K), (11)

where the optimal bubble bK solves the following elliptic boundary-value prob-
lem:

{

−ǫ∆bK + βK · ∇bK = 1 in K,
bK = 0 on ∂K.

(12)

Hence the problem of finding the optimum value for τK would be solved if
we knew explicitly the exact solution of problem (12). However, the exact
computation of this function is as difficult as the original problem itself, except
in the one-dimension where the solution is known and its average over K is the
coth-formula (5). In higher dimensions the computation of the residual–free
bubbles becomes a major task. Therefore, the problem requires some suitable
approximations, and there are some possibilities known to accomplish this. We
refer to [8, 6, 7, 4, 13, 14, 15] for more details.

3.2.2. Novel RFB-Based Scheme

In [24], for the coarse-scale space consisting only of piecewise linear functions,
it is shown that residual free bubbles type can be constructed to completely
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recover the SUPG with a special choice of the streamline diffusion parameter.
Knowing that, to compute the contribution of the RFB functions to the prob-
lem, we need to solve problem (12) in each element, separately. An efficient
approach is introduced in [24] to compute the approximate solution of the bub-
ble problem. Here we briefly describe this method (for more details, see [24]).
Specify a “sub-mesh” Rh of each K that consists of non–overlapping parallelo-
grams Rei , such that each element has one corner point x−

i where x−
i ∈ ∂K−,

and one corresponding adjacent side being oriented in the streamline direction
(ei) = (x−

i ,x
+
i ),x

+
i ∈ ∂K+. Next, in each ei of K let us define the solution bei

of the following one dimensional problem:







Leibei = 1 in ei = ]x−
i ,x

+
i [,

bei(x
−
i ) = bei(x

+
i ) = 0,

(13)

where Lei is the convection–diffusion operator:

Leiv = −ε(v)
′′

+ βei(v)
′

,

βei being the projection of β along ei and (·)
′

is the derivative along the edge
ei. The solution bei is given in each ei of K by:

bi(x) :=
|ei|

‖β ‖

(

ϕi(x)−
exp(peiϕi(x)) − 1

exp(pei)− 1

)

, (14)

for all x ∈ (x−
i ,x

+
i ) where x−

i ∈ ∂K− and x+
i ∈ ∂K+ denote the inflow point

and the outflow point respectively corresponding to x and where

ϕi(x) :=
‖x− x−

i ‖

|ei|
and pei =

|ei|‖β ‖

ǫ
. (15)

Using the relation between the local ξ = (s, t) and the global coordinates sys-
tem:

{

s = (x− x−i )e(i,1) + (y − y−i )e(i,2),
t = − (x− x−i )e(i,2) + (y − y−i )e(i,1),

(16)

where ei := (e(i,1), e(i,2))
T (‖β ‖ = β ·ei) denotes the unit vector from x−

i =

(x−i , y
−
i ) to x+

i , the equation (15) can be expressed in each Rei as ϕi(s) =
s

|ei|
.

Therefore, in each Rei the following definition of the bubble was suggested:

bRei (ξ) =

{

bi(s− t/mi) if ξ ∈ Rei ,
0 elsewhere inK.

(17)
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Here mi = tan(αi) is the slope of the straight line segments (∂Rei − (∂R
ei‖
1 ∪

∂R
ei‖
2 )), where ∂R

ei‖
1 and ∂R

ei‖
2 denote the edges of the mesh parallelogram

Rei that are parallel to β. Finally, in each K the bubble bRh
=

∑

Rei∈Rh

bRei

is introduced. It is worth pointing out that by construction, the proposed
bubbles allow static condensation. After the bubbles have been eliminated, the
Stabilized Method approximation gives the SUPG method for the convection-
diffusion problem.

Let hβ,K denote the longest line segment parallel to the convection vector
β and contained in the element K. The expression of the parameter provided
by the Stabilized Method approach is given by (see [24]):

τK =
hβ,K
3‖β ‖

+
ǫ

‖β ‖2

(

2

P2
eK

∫ PeK

0

x2

exp(x)− 1
dx− 1

)

=
hβ,K
3‖β ‖

+
hβ,K
‖β ‖

(

2F(PeK )−
1

PeK

)

.

(18)

Here the Péclet number is defined as PeK =
hβ,K ‖β ‖

ǫ and

F(PeK ) =

∫ 1

0
G(x,PeK ) dx with G(x,PeK ) =

{

x2

exp(PeK
x)−1 if x 6= 0,

0 else.

(19)

As it is proved in [24], the streamline diffusion parameter satisfies:
⋄ τK = O(hK) for the convection-dominated case.
⋄ τK = O(h2K) for the diffusion-dominated case.

This allows to define a doubly asymptotic approximation of τK by

τK ∼
hβ,K
3 ‖β‖

min

{

PeK

8
, 1

}

. (20)

The comparison of this value with the one used in the SUPGmethod is discussed
for instance in [24].

4. A Posteriori Error Estimators and Indicators

The a posteriori estimators provide an estimate of the error between the com-
puted discrete solution uh of (7) and the unknown solution u of the continuous
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problem (1) in a prescribed norm ‖ · ‖ using only informations which are avail-
able during the solution process, mainly the discrete solution itself and the data
of the problem.

Several types of a posteriori error estimators are available in the literature.
They may be classified into three families: the family of gradient indicator
and gradient recovery based on the Zienkiewicz–Zhu work [28], the family of
residual–based, and local–Neumann family. See John [18] for a numerical com-
prehensive discussion of these estimators. According to the numerical conclu-
sions of [18], all these estimators have strengths and weaknesses.

A first step in the a posteriori estimation is to choose a suitable norm ‖ · ‖
in which the error should be estimated. The question of what are appropriate
norms for error estimation for convection–diffusion equations is still under dis-
cussion within the scientific community. We chose to use in this work residual–
based estimators with both H1–semi norm and the L2–norm, see remark 4.1.
In fact, the implementation of such estimators is quite easy, and following [18],
the residual-based estimator have a general good behavior.

We will first begin with general considerations on a posteriori estimates.
In particular, we give some definitions of the estimators, efficiency index and
the local indicators that are directly involved in the numerical studies and in
adapting meshes.

Let ηK be the local error indicator on the mesh element K, see (24), and

η =

√

∑

K∈Th
η2K , (21)

the global error indicator. The error estimation should satisfy the following
global upper and a local lower estimates:







‖u− uh‖ ≤ Cη, C > 0,

ηK ≤ CK ‖u− uh‖U(K) , U(K) is a neighbourhood of the element K.

(22)
Summation of the second inequality of (22) over all mesh elements gives a lower
estimate of the global error. Note that the first inequality of (22), gives infor-
mation on the global error, and the discrete solution uh is sufficiently accurate
if Cη ≤ δ, for a given tolerance δ.

The efficiency index Ieff is defined by:

Ieff =
η

‖u− uh‖
. (23)
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Then an a posteriori error estimator is called efficient, if Ieff and I−1
eff are

bounded for all triangulations and an efficient a posteriori error estimator is
called robust if Ieff and I−1

eff are bounded independently of the coefficients of
the problem. We refer to [18], for details on computations of Ieff for various a
posteriori error estimators.

4.1. A Residual–Based Error Estimator in the H1–Semi Norm and
L2–Norm

Let ‖ · ‖0,ω be the L2(ω)–norm. The general form of residual–based a posteriori

error estimators for convection–diffusion problems is

η2K = δK ‖Rh‖
2
0,K +

∑

E∈∂K,E/∈∂ΩN

δE
2

‖σh‖
2
0,E

+
∑

E∈∂K,E∈∂ΩN

δE ‖ε∇uh · nE − gNh‖
2
0,E , (24)

where Rh and σh denote, respectively, the residual and the jump of ∇uh across
the internal edges of the mesh:







Rh = fh + ε∆uh − βh · ∇uh,

σh = [|ε∇uh · nE |]E ,
(25)

fh, gNh and βh are approximations of f, g and β respectively. [| · |]E denotes
the jump across an edge E. For a function vh ∈ Vh, this jump is defined for
x ∈ E by:

[|vh(x)|]E =











lim
t−→0+

[vh(x+ tnE)− vh(x− tnE)] E /∈ ∂Ω,

lim
t−→0+

[−vh(x− tnE)] E ∈ ∂Ω,

where nE is the outward unit normal on E. If E is the common edge to the
elements K1 and K2 then, for appropriate choice of oriented normal nE , we
have:

[|vh|]E = vh|K2
− vh|K1

.
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Remark 4.1. The a posteriori error estimators for the H1–semi norm
and L2–norm are, respectively, obtained by setting in (24):







δK = h2K and δE = hE (H1–semi norm),

δK = h4K and δE = h3E (L2–norm).
(26)

Remark 4.2. An advantage of the residual-based estimator is that it can
be applied to more general spaces like Lp or W 1,p, 1 < p < ∞. This is done,
simply by applying the appropriate norms of these spaces in the expression of
local indicator (24), see for example Verfürth [25, 26].

Let us mention that the estimator (24) is not robust in the convection-
dominated regime. For robust estimators we refer to Verfürth [27], however, it
is used for comparison purpose with different estimators for convection-diffusion
problems in John [18]. Recently, John and Novo [19] have developed a robust
SUPG a posteriori error estimator for convection-diffusion equations. In both
[18] and [19], the stabilisation method used is SUPG. Our aim in this work is
to show the superiority of the RFB method compared to the SUPG method.
On other hand, we show that, at least with the estimator (24), the result can
be improved (see the section below).

5. Numerical Results

We first choose a type of an estimator as well as a desired norm in which the
error will be evaluated. In our studies, we applied the residual–based estimator
with H1–semi norm.

At a given level of refinement k, and after the computation of the error
indicators, every mesh element K possesses an indicator ηK,k computed from
(24). With the help of these indicators, it must be decided which mesh elements
should be refined or coarsened. In our study, refinement is applied to the
elements such that:

ηK,k > 0.5× max
K∈Th,k

(ηK,k), Th,k is the triangulation at the refinement level k.

If the solution is known a priori, the adaptive procedure allows to assess the
quality of the estimator, which in principle should only occur in areas with large
gradients. Moreover, one can calculate the error at each level of refinement and
compare it to the global indicator η given by (21). If not, the resulting solution
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is satisfactory if it contains the desired qualities and particularly, the position
of the boundary layers which are the main difficulties in numerical simulation
of convection–diffusion problems.

Two types of numerical tests will be performed. The first one concerns the
evaluation of the efficiency of the estimator. This is done by assuming that
the exact solution u of the problem (1) is known and considering a sequence of
meshes obtained by successive refinement.

The second concerns the automatic refinement of meshes. We always start
with a coarse mesh, see Fig. 1, and we launch the automatic refinement and
coarsening. The final mesh is obtained by deciding a stopping criterion. This
usually covers the maximum number of items. In this case, local indicators are
important.

Figure 1: Initial coarse mesh: Grid1 and Grid2

As it was mentioned above, one has to precise some stopping criterion. In all
examples discussed below, the computations were stopped after the first mesh
on which the sum of degrees of freedom (d.o.f.) and Dirichlet nodes exceeded
105.

To address the many situations as possible, we considered the case of dif-
fusion alone and the case of convection–diffusion. The first case allows, firstly
to validate the calculations and error estimates. For the second case, we ex-
amined several types of inner and boundary layers as well as several kind of
singularities.
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5.1. Global Error Estimates

For both examples considered in this section, the solution is assumed to be
known. Numerical tests will therefore allow to evaluate the numerical error
and compare it to the theoretical error ‖u− uh‖ given by the a priori estimate.
The solution to the problem of diffusion alone, with locally high gradients,
allows to verify that the mesh adaptation procedure is working properly and
it acts in the vicinity of areas of strong gradients. The solution of convection–
diffusion problem depends on the diffusion parameter ε. This allows to see the
behaviour of the numerical solution based on this parameter. Moreover, as it
has boundary layers, we will then see that these layers are captured by the
mesh that adapts well to these situations.

5.1.1. Diffusion Problem

We first consider the convection–diffusion problem (1) in a domain Ω =]0, 1[2.
The coefficients are

ε = 1, β = (0, 0)t,

and f is chosen such that the analytical solution is given by:

u(x, y) = e−100((x−0.5)2+(y−0.5)2)). (27)

The boundary data are:

ΓD = Γ and gD = u|ΓD
.

This is obviously a diffusion problem whose solution u admits large gradients
near the point (1/2, 1/2). Indeed, the derivatives of the solution do not depend
on the diffusion parameter ε which is not typical for solutions of convection–
diffusion problems. Nevertheless, we can estimate the error in both L2 and H1

norms, and the behaviour of the adaptive mesh refinement, see next figures.

Starting from the initial coarse mesh Grid1, the computations were carried
out on adaptive meshes which were generated using the indicators ηK given by
(24).

As we can see on Fig. 2, the mesh refinement is done primarily in the
vicinity of point where the gradients are large. Let N be the number of degrees
of freedom, then obviously, N−1 asymptotically behaves as h2. The errors
correspond to the theoretical estimates which are of the order of O(h2) for the
L2–norm, and O(h) for the H1–semi norm.
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Figure 2: Diffusion problem: adapted mesh, numerical solution and
convergence history

5.1.2. Convection–Diffusion Problem: Regular Boundary Layers

In the previous example, the derivatives of the solution do not depend on the
diffusion parameter ε which is not typical for solutions of convection–diffusion
problems. We consider now a convection–diffusion problem with regular bound-
ary conditions, different values of the diffusion parameter ε and β = (2, 3)t. The
function f is chosen such that the analytical solution is given by:

u(x, y) = xy2 − y2exp(
2(x− 1)

ε
)− xexp(

3(y − 1)

ε
)

+ exp(
2(x − 1) + 3(y − 1)

ε
), (28)
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Ω =]0, 1[2, the boundary data are ΓD = Γ and gD = u|ΓD
. As we can see on

Fig. 3, the solution possesses typical regular layers at x = 1 and y = 1.

Figure 3: Exact solution and an adapted mesh for ε = 10−4

The solution being dependent on the diffusion parameter, the numerical
studies have been performed for three different values of this parameter:

ε = 10−2, ε = 10−4 and ε = 10−6.

Starting from the initial coarse mesh Grid1, the computations were carried
out on adaptive meshes which were generated using the indicators ηK given by
(24). In Table 1, we present the obtained errors for various values of the param-
eter ε. As we can see in Table 1, to achieve the same error in L2–norm, using
the RFB method with the asymptotic parameter τrfb, we need only 65% of de-
grees of freedom required by the SUPG method with the asymptotic parameter
τsupg (for eps = 0.01), 43% for ε = 10−4 and 83% for ε = 10−6. Which clearly
shows the superiority of the RFB method in these three situations. In dominant
convection case, ε = 10−6, it still requires less degrees of freedom. Furthermore,
note that for about the same error, we obtained the same number of degrees

of freedom with two parameters τrfb and τh =
hβ,K
3 ‖β‖

. This is explained by the

fact that τrfb goes to τasy =
hβ,K
3 ‖β‖

when ε goes to zero. Similarly, in the case

of SUPG method, we obtain the same results for ε = 10−4 and ε = 10−6, with

τsupg and τh =
hK
2 ‖β‖

. Indeed, we know that τsupg goes to τasy =
hK
2 ‖β‖

.
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ε = 10−2 ε = 10−4 ε = 10−6

τh d.o.f. ‖ · ‖0,Ω | · |1,Ω d.o.f. ‖ · ‖0,Ω | · |1,Ω d.o.f. ‖ · ‖0,Ω | · |1,Ω
hK
2 ‖β‖

224234 0.0009 0.239 115186 0.002 26.43 225654 0.0017 142.1

hβ,K
3 ‖β‖

57339 0.0009 0.290 56011 0.0019 29.8 187051 0.0017 171.2

τsupg 59694 0.0001 0.21 115186 0.002 26.43 225654 0.0017 142.1

τrfb 39021 0.0001 0.29 49167 0.002 32.54 187051 0.0017 171.2

Table 1: Comparison of the SUPG and RFB methods and their
asymptotic behaviour

5.2. Adaptive Mesh Refinement

This section presents numerical experiments to study the behaviour of the a
posteriori estimate of the error with respect to the mesh adaptation procedure.
The examples studied here cover almost all types of singularities and layers
(boundary or inner). In some examples, the solution does not have the required
regularity in the a priori error analysis. However, this kind of test is interesting
because generally we do not know the solution, even less its regularity.

Example 5.1 (Solution with parabolic and exponential boundary layers).
This example corresponds to the following situation:

Ω =]0, 1[2, ε = 10−6,β = (1, 0)t,

f = 1 in Ω and gD = 0, on ΓD = Γ.

The computations were carried out on the initial mesh Grid1. The analyt-
ical solution is not known a priori, we compare the numerical results to the
solution obtained on a very fine uniform mesh consisting of 263169 degrees of
freedom.

As shown in Fig. 4, refinement is achieved in the areas of boundary layers.

Example 5.2 (Corner singularity, regular and inner boundary layers). In
this example, we consider the L-shaped geometry Ω =]0, 1[2\[0.5, 1[×]0, 0.5].
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Figure 4: Example 5.1: the computed solution on an uniform mesh
and an adapted mesh

The coefficients of the convection–diffusion problem (1) are:

ε = 10−6, β = (1, 3)t,

f(x, y) = 100r
(

r − 1
2

)

(

r −
√
2
2

)

, r =
√

(x− 1
2 )

2 + (y − 1
2)

2.

With such data, the exact solution of problem (1) is unknown but it presents
regular boundary layers at:























y = 1,

{(0.5, y); 0 < y ≤ 0.5} , and at

{(1, y); 0.5 < y ≤ 1} .

It presents also an inner layer in the direction of the convection vector β start-
ing from the singular point (0.5; 0.5), see Fig. 5. Moreover, because of the
re–entrant corner, the domain is not convex, then this solution possesses a sin-
gularity corner at (0.5, 0.5), u /∈ H2(Ω). We are thus confronted with a singular
case where we can not apply the theoretical results giving the a priori estimates
of the error.

Grid2 was used as the initial mesh. As for the previous example, since we
do not know the analytical solution of this problem, we compare the behaviour
of the error estimators with graphical representation of the computed solution
on a very fine uniform mesh. As we can see in Fig. 5, the error estimator
produces meshes which are well refined within all layers.
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Figure 5: Example 5.2: Computed solution on a very fine uniform
mesh and an adapted mesh

Example 5.3 (Discontinuous boundary conditions and inner layers). This
example corresponds to the following situation:

Ω =
]

0, 1
[2
, ε = 10−6, β = (1, 2)t, and f = 0 in Ω.

The boundary conditions are given by:

gD =







0, on Γ1 = {(x, 0); 0.25 ≤ x ≤ 1} ∪ {(0, y); 0.25 ≤ y ≤ 1} ,

1, on Γ2 = {(x, 0); 0 ≤ x < 0.25} ∪ {(0, y); 0 ≤ y < 0.25} ,

and ε∇u · n = 0 on Γ− (Γ1 ∪ Γ2) .

For a graphical representation of the solution see Fig. 6. Due to the jump
in the boundary conditions, the solution does not have the required regularity.
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Once again, we find ourselves in a situation where we can not guarantee suffi-
cient regularity to apply the theoretical results. However, this test is of great
interest. The solution is obviously not known but we know that it represents
the transport, in the whole domain, of the boundary condition gD on the inlet
part of the boundary. Of course, this solution allows internal boundary layers
along the vector of convection. This aspect of the solution is well produced
by the mesh adaptation procedure. We can see from Fig. 6, that the mesh
refinement is essentially performed along the lines:

y = 2x+ 0.25 and y = 2x− 0.5.

Figure 6: Example 5.3: Numerical solution and an adapted mesh

6. Conclusion

In this work, we showed that the combined use of stabilization techniques and
adaptive mesh procedures can efficiently solve convection–diffusion problems
and allows to obtain accurate solutions. Moreover, the use of mesh adaptation
may significantly reduce the number of degrees of freedom and thus enable a
fast and efficient computing.

Several numerical experiments are reported. The examples considered in
this work cover almost all types of singularities and layers (boundary or in-
ner). Finally, this approach could be applied to all kind of equations containing
transport terms. Certainly, the numerical results can be improved using a ro-
bust a posteriori estimator. This work is a first step towards treating more
complex problems such as linearized Navier–Stokes equations (Oseen problem),
Navier–Stokes equations or the problem of viscoelastic fluid flows, etc.
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