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Abstract: This study aims to demonstrate the efficiency of the quarter-sweep
Gauss Seidel (QSGS) method using the quarter-sweep approximation equation
based on a Galerkin scheme in order to solve two-dimensional Helmholtz equa-
tions. Furthermore, the basic formulations of the Full-Sweep and Half-Sweep
Gauss Seidel methods, namely FSGS and HSGS respectively are also presented.
The numerical results of test examples are also included in order to verify the
performance of the proposed method.
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1. Introduction

Helmholtz equations often appear in various applied fields, including, but not
limited to, science and engineering. It is widely employed to model problems of
time harmonic acoustic and electromagnetic fields, optical waveguide, acoustic
wave scattering, noise reduction in silencer, water wave propagation, radar
scattering and light wave propagation problems [4, 15, 16]. In solving these
problems, various researchers have recommended the use of common numerical
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methods such as mesh-based methods in order to formulate numerical solutions.
There exist several available schemes in mesh-based methods, including finite
element, finite difference, boundary element and finite volume, which are widely
used to construct approximation equations in science and engineering problems:
linear, nonlinear, homogeneous and inhomogeneous.

On the other hand, this study is primarily concerned with triangle element
solutions based on the Galerkin scheme for solving two-dimensional Helmholtz
equations. Generally, two-dimensional (2D) Helmholtz equations in the generic
form are defined as follows:

0*U 02U

oz T gz oV = few), (@) € ot x o] (1)

with the Dirichlet boundary conditions

U(z,a) = gi(z), a<z<b, U(z,b) = ga(z), a<xz<b,
U(aay) - g3(y)7 a<z<b, U(b7 y) = 4(37)7 a<y<hb,

where « is a non-negative constant and f (x,y) is a function with sufficient
smoothness. To enable in formulating the full-, half-, and quarter-sweep sweep
triangle element approximation equations for problem (1), our next discussion
will focus on uniform node points only as shown in Figure 1. Based on the
Figure 1, the solution domain needs to be discretized uniformly in both x and
y directions with a mesh size, h which is defined as

_b—a

Ar=Ay=nh — m=n+1. (2)

The full-, half-, and quarter-sweep networks of triangle finite elements need
to be built as a guideline to derive triangle finite element approximation equa-
tions. Then these approximation equations will be used to form systems of
finite element approximation equations for problem (1). On the contrary, using
the same concept of the half-, and quarter sweep iterations applied to finite
difference methods [7, 9], finite element networks will consist of several triangle
elements in which each triangle element will involve three solid node points
only of type e as depicted in Figure 1. Consequently, the implementation of the
full-, half-, and quarter-sweep iterative algorithms are performed onto the node
points of the same type until the iterative convergence criterion will be satis-
fied. Then other approximate solutions at remaining node points (i.e., points
of types [ and o) will be calculated directly [8, 10, 11].

The remainder of this paper is organized as follows. Section 2 discusses the
finite element method based on Galerkin scheme for discretizing problem (1).
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Figure 1: a). b). and c). show the distribution of uniform node
points for the full-, half-, and quarter-sweep cases respectively at
n=_8.

Section 3 presents the formulation and implementation of the family of GS
methods in solving linear systems generated from the triangle element approx-
imation equations. Section 4 presents some numerical examples, while conclu-
sions are presented in Section 5.

2. Quarter-Sweep Triangle Element Approximations

As explained in the previous section, discretization based on the Galerkin
scheme was used to construct approximation equations for problem (1) by us-
ing the first order triangle finite element approximation equation. Considering
three node points e only, the general approximation of the function, in the form
of interpolation function for an arbitrary triangle element, e is given by [1, 2, 5]

U, y) = Ni(2,y)Us + N, y)Us + Na(w,y)Us (3)
and the shape functions Ni(x,y), k = 1,2,3, can generally be shown as:
N (z,y) = m(akerkaery), k=1,2,3, (4)
where
Al = 21 (y2 — y3) + 22 (Y3 — y1) + 23 (y1 — v2),
ai T2Y3 — T3Y2 by Y2 — Y3 c T3 — T
ag | = | x3y1—21y3 |, | b2 | =|ys—wm1 |, |2 | =] T1—23 |,

as T1Y2 — T2Y1 b3 Y1 — Y2 c3 T — X3
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Furthermore, the first order partial derivatives of the shape functions towards
x and y can be shown, respectively, as follows:

0 by
o detd 5. k=123, (5)
gg(Ak(x7y» ::detA

Based on the definition of the hat function [5, 6, 12], R, s (z,y), the approxima-
tion function, in case of the full-, half- and quarter-sweep cases for the entire
domain in Eq. (1), is abridged, respectively, as follows:

Uw,y) =Y Res(@,y)Uns (6)
r=0 s=0

" m m m—1 -1

U(xay) = Z Z Rr,s(xay)Ur,s + Z Rrs rs (7)
r=0,2,4 s=0,2,4 r=1,3,5s=1,3,5

and
Uw,y)= > Y Reslz,y)Us. (8)

In a similar manner, the definition of the approximate function, f (x,y) for all
cases can be easily defined via the hat function. In fact, Egs. (6), (7) and (8)
can be denoted as approximate solutions for problem.

To construct the full-, half-, and quarter-sweep linear finite element approxi-
mation equations for problem (1), the constructions of approximation equations
in this study are limited by taking account of the Galerkin scheme. Now con-
sider the Galerkin residual method [13, 14] to be given as follows:

/ / Rij(e.y)Eiy(e.y) =0, ij=0,1,2,....m, )

where E(z,y) = 8';%/ + 55 BQU —aU — f(z,y) is a residual function. By applying
the boundary condltlons Eq. (9) can be shown in the following form:

ou ou
/ <_Rz’,j (z,y) 8—d90 + R j(x,y) %d?/ —akRj(z,y) U>

b b
3R” x,y) Ou  OR;; (x,y) Ou
— = 1
//( 8x+ ay 6y—|—aR”(x ) U | dedy = F; 5, (10)
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where

b b
Fij = //Ri,j (z,y) f (2,y) dxedy.

By replacing Eq. (5) and imposing the boundary conditions into problem (1),
Eq. (10) generates a linear system for all cases. For clarity, the linear system
can generally be presented as follows:

_ZZKJTS ZZCZj,T,sv (11)
=2 Liire =22 Dijre (12)

b b
OR; j OR, s OR; 8Rr s
,Jrs //( z O >d:):dy—|—//< J )dacdy,

where,

b b
7~]'rs_Oé//R’Lj z y TS(x y)dxdy7

b b
Ci*,j,r,s://(Ri,j (z,y) Rrs (2,y)) dzdy,
W—a// 13 (5,0) R 2,9) ddy.

In essence, the linear system in Eqgs. (11) and (12) for the full-, half- and
quarter-sweep cases can be straightforwardly expressed in stencil form, respec-
tively, as follows:

Full-sweep:
B2 B3 11
Ba p1 B2 (Uiyj=p1| 1 6 1] fij, (13)
B3 B 11

where
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Br="h*/12, py=—(4+abB1), Bo=1—1B1, s =P

708
Half-sweep:
Bs Bs
P2
Bs Bs
Bs s
Be P2 Bs
Bs Bs
Bs
Be P2
Bs
where

Be | Uij = Ba
Uyj=08s]1
Bs

Uij = P
Bs

1
5 1 fi,j) 1= 1,
1
1
1 fi,ja 275 1,n,
1
1 1
5 fij, i=mn, (14)
1 1

Bi=h>[6, pp=—(4+abB4), Bs =1 —1rBs, B5 =P

Quarter-sweep:

b7

0
Br 0 p3 O

0
Bs B

where

Bs
Br

Uij = Bs

1

0 1 fij

_— O oy O =
o

Be = 4h* /12, ps = — (4+ abf), Br =1 — 18, Bs = rf.

As a matter of fact, the stencil forms in Egs. (13) to
node points in articulating their approximation equations.

(15) implicate seven
Then, by taking

description of these computational molecules, the further discussion in the next
section for the family of GS methods will be forthright to explain the manner
to construct their formulation.
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3. Formulation of Family of GS Methods

To derive the formulation of family of GS methods, let Egs. (13) to (15) be
represented in a generalized form as follows:

AU = f, (16)

where A, U and f indicate the coefficients matrix, unknown vector and known
vector respectively.

As afore-mentioned, the GS method family consists of FSGS, HSGS and
QSGS iterative methods, which are applied to solve the corresponding finite
element approximate equations, in Egs. (11) and (12). In what follows we
consider the linear system (16) where the matrix A has Property A and
m-consistently ordered. Thus we present some definitions, see [3].

Definition 1. Let A be a real matrix. Then, A = M — N is referred to as
1. a regular splitting if M is nonsingular, M~' > 0 and N > 0.

2. a weak regular splitting if M is nonsingular, M ~! > 0 and N > 0.
3. a nonnegative splitting, if M~ > 0.

4. a convergent splitting, if p (M_IN) < 1.
Based on regular splitting, the GS splitting can be dened as follows:

Definition 2. Let A = D — L —V, where D, —L and —V are diago-
nal, strictly lower triangular and strictly upper triangular parts of matrices A
respectively. We call A = M — N the GS splitting of A, if M = D — L and
N = V. In addition, the splitting is called

1. GS convergent p (M_IN) <1

2. GS reguler if M~' => 0 and N > 0.

3. a nonnegative splitting, if M~ > 0.

4. a convergent splitting, if M~' = (D— L)' >0and N =V > 0.

Hence, the common scheme for all three GS methods can be written as follows:
U+ — (p - )™ (VU(’“) + f) . (17)
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Actually, the iterative methods attempt to find a solution to the system of
linear equations by iteratively solving the linear system using approximations
for the vector U. Iterations continue until the solution is within a predetermined
acceptable bound on the error [3]. However, our cases will be restricted on
the formulation of QSGS method. By determining values of matrices D, —L
and —V, as stated in Definition 3.2, the general algorithm for QSGS method
with quarter-sweep finite element approximate equations, respectively, to solve
problem (1) would generally be described as follows:

(k+1) 1 k k k
Uij = . (Uz(+)23 UL+ U + UL 2)
k k

where

Fij = B (fi—2,j + fivoy + fij—2+ fijee + ficoj—2+ firoj42 +6fij)-

Eq. (18) allows us to iterate through quarter of the points, lying on the 2h-grid.
Again, it can be observed that Eq. (18) involves points of type e. Therefore,
the iteration can be carried out autonomously involving only this type of point.
Hence the QSGS method is defined as,

1. Discretize the solution domain into point of types (ie., ®) as shown in
Figure 1(c).

2. Perform iterations (using Egs. (18)).

3. Evaluate the solutions at the remaining points.
a) points of type O using Eq. (14).
b) points of type o using Eq. (13).

4. Display approximate solutions.

4. Numerical Results

In order to compare the performances of the iterative methods described in
the previous section, several numerical experiments were carried out on the
following two Helmholtz equations.

Example 1. ([11])
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0*U  0*U

W + 6—:]_/2 = ($2 + yQ) €$y — aemy, (19)

U(z,0)=1, U(z,1)=¢€",
U@O,y)=1, U(lLy)=¢e"

and the exact solution of Example 1 is given by

U(z,y) =e".
Example 2. ([11])

0*U 0*U

5zt e —aU = —(cos(z +y) + cos(z — y)) — acos(z) cos(y), (20)

U(z,0) = cosz, U (x, %) =0,
U(0,y) = cosy, U(m,y) = —cosy.

and the exact solution of Example 2 is given by
U(z,y) = cos(x) cos(y).

All the simulations were implemented by a computer with processor Intel(R)
Core (TM) i7 CPU 860@2.80Ghz with memory is 6.00GB. Throughout the
simulations, the convergence test is considered the tolerance error ¢ = 10710
and carried out on several different mesh sizes such as 284, 308, 332 and 356. In
comparison, the FSGS method acts as the control of comparison of numerical
results. Three criteria will be considered for methods such as the number of
iterations (k), execution time (t) and its maximum and absolute error (Abs.
Error) in comparison.

The results of numerical simulations, which were obtained from implemen-
tations of the FSGS, HSGS and QSGS methods for Examples 1 and 2, have
been tabulated in Table 1 respectively. In the meantime, reduction percentages
in terms of number of iterations and computational time for HSGS and QSGS
methods compared with FSGS method have been tabulated in Table 2.
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Table 1: The numerical simulations of the three methods for Exam-

ples 1 and 2.
Example 1
n Methods k t Abs.Error
FSGS 97760 273.61  5.1672e-7
284 HSGS 51141 130.48  1.5848e-5
QSGS 26705 44.74 8.4162e-6
FSGS 113735 369.36  6.5169e-7
308 HSGS 59296 226.54  1.3511e-5
QSGS 31097 63.67 7.1563¢-6
FSGS 130812 522.71  7.9180e-7
332 HSGS 68495 321.09  1.1657e-5
QSGS 35797 83.08 6.1595¢e-6
FSGS 148976 587.21  9.3818e-7
356 HSGS 78040 388.33  1.0160e-5
QSGS 40801 110.64  5.3573e-6
Example 2
FSGS 93990 273.61  1.6410e-6
284 HSGS 49256 130.48  1.4089e-5
QSGS 25753 44.74 7.2572e-6
FSGS 109305 369.36  1.6046e-6
308 HSGS 57311 226.54  1.1996e-5
QSGS 19979 63.67 6.1680e-6
FSGS 125668 522.71  1.6095e-6
332 HSGS 65923 321.09  1.0338e-5
QSGS 35797 34500  5.3069e-6
FSGS 148976 143065 1.6476e-6
356  HSGS 78040 75084  9.0013e-5
QSGS 40801 139311  4.6143e-6

5. Conclusions

In this paper, we have presented an application of the quarter-sweep itera-
tions with a GS method for solving sparse linear systems generated from the
first order triangle finite element approximation equation by using the Galerkin
scheme.

Overall, the numerical results show that the QSGS method is a better
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Table 2: : The reduction percentages of the HSGS and QSGS meth-

ods compared with FSGS method.

Example 1
Methods k t
HSGS 47.69-49.63  75.40-77.27
QSGS 72.61-72.68 81.16-83.65
Example 2
Methods k t
HSGS 47.55-47.63 47.94-54.68
QSGS 75.52-72.60 89.49-89.72

713

method compared to the HSGS, and FSGS methods in the sense of number
of iterations and execution time. This is mainly because of the reduction in
term of computational complexity; since the implementations of the QSGS will
only consider approximately quarter of all interior node points in a solution
domain.
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