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Abstract: In this work, we give a general overview on pseudo-spectral meth-
ods. Three types of its variants which are: the adaptive spectral methods
conceived for functions with rapid variation in certain domains, the rational
adaptive spectral method using rational interpolants, and the adaptive grid
Chebyshev points thanks to conformal maps, another type of approximation by
the Chebyshev spectral method constituted by a collection of algorithms coded
in an objet-oriented MATLAB software environment are considered.

AMS Subject Classification: 41A50, 41A21, 35C11, 65M70
Key Words: pseudospectral methods, modified Chebyshev points, conformal
maps

1. Introduction
Spectral methods form a classe of provided numerical methods to solve partial

differential equations. Among these spectral methods include Galerkin method,
Tau method, Tau-collocation method, collocation method, and so many others.
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We will be interested in the two last one which constitute spectral collocation
methods often called pseudo-spectral methods.

Spectral methods have known a big success favor partly about books pub-
lished in 1977 by Gottlieb et al. [19], Gottlieb et al. [20](1984), and the first
publishing of the book of Canuto et al. [12], which covers aspects of the ap-
plication of spectral methods as long on plans theoretical that practice. But
practices of spectral methods were evolved with B. Fornberg’s works [18]. It
explains the methods under a specific angle, like being the limit of finite dif-
ference methods and the book [32]. These methods are widely studied in the
literature [21, 22, 26]. We can estimate that pseudo-spectral methods knew
their real development from 1970s, after Cooley et al [13] proposed in 1965 a
first algorithm of the Fast Fourier Transform (FFT).

The concept of pseudo-spectral (PS) methods is to approach unknown so-
lutions of partial differential equations by global interpolants which satisfy col-
location equations. The pseudo-spectral Chebyshev method is based on the
algebraic polynomial interpolant and the Chebyshev points z; = — cos (k7 /N)
where N is the degree of the polynomial interpolant. It is applied to problems
with the nonperiodic boundary conditions on bounded intervals.

The pseudo-spectral Fourier method uses the trigonometric interpolating
polynomial and the equidistant points z; = kx/N with £ = 0,1,.... N — 1
and also applied to problems with periodic boundary conditions on a bounded
interval. See their theorems of convergence in [29](1986).

These two types of methods are applied to the resolution of problems with
solutions sufficiently smooth. When a real function f can be continued analyt-
ically to the closed ellipse E,(ellipse with foci &1, and p the sum of semi axis
lengths), the spectral Chebyshev method using N + 1 collocation points ap-
proaches the derivative of this function on [—1, 1] with an error which decreases
at arate O (p~V) as N — oo [29]. Such a convergence means that a few de-
grees of freedom are sufficient to achieve a high degree of accuracy. That is not
the case with other methods of weak order, such as the finite difference (FD) or
finite element methods (FE) methods, for which a correct accuracy is obtained
only at the price of large increase of the number of points (and consequently, of
computer time). A comparison between PS Fourier and FD methods is given
in the following table 1 extracted from [11]:

But if the function f has singularities in the complex plane close to [—1, 1] so
that p &~ 1, convergence can be too slow for the method to be effective. In this
case, it would the function f has to be analytical into a large region nonelliptical
region by building a larger ellipse with foci +1 with the aid of conformal maps
g wherein f is analytical with the aim of improving the convergence rate.
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N  FD2ndorder FD 4th order PS Fourier
16  3.4020e — 001  1.3844e — 001 4.3179e — 003
32 9.3589¢ — 002 1.5750e — 002 1.7619¢ — 007
64  2.5833e — 002 1.1318¢ — 003 2.3870e — 014
128  6.5118¢ — 003  7.5900e — 005 7.2054e — 014

Table 1: The table shows the error decay of approximating the first
derivative of ™7 through a second and a fourth order FD method
and a Fourier pseudo-spectral method.

This paper is organized as follows: after this introduction in section one,
adaptive spectral method as well as some theoretical results are presented in
Section 2. In Section 3, we will focus on adaptive rational spectral methods.
A view on an other type of approximation by the spectral Chebyshev method
constitutes Section 4. Remarks and open questions are expressed in the last
section.

2. Adaptive Spectral Methods

Adaptive spectral methods were initially designed for functions with rapid vari-
ation adapting collocation points in form to functions thanks to conformal maps
[4, 5, 21, 25]. There are two issues that must be addressed in the systematic
application of mappings to enhance the accuracy of the pseudo-spectral Cheby-
shev method. These are:

e the construction of an appropriate family of mappings,

e the criteria for choosing a particular mapping from this family according
to the behavior of the solution to be approximated.

In [4], the chosen transformation is

r=1+ %arctan (al tan (% (o(fy_—yl — 1))) , (1)

with —1 <y <1, =1 < as < 1 and a3 > 0. This maps Chebyshev points in
the transformed coordinate into points that cluster in physical coordinates.

To describe adaptive spectral methods [4], the following non linear reaction,
diffusion, convection equation is considered

Up = Uy + Uy + R(u), =1 <z <1, (2)
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where R(u) is a nonlinear term. Let u be a solution of the equation (2), the

chosen functional is
9 ) 1/2
2
+ |u ——dx , 3
u ) — ) 3

(1

which is an increasing of the error of approximation of u by the spectral Cheby-
shev method measured in a weighted discrete norm Ly. This enables to find
a = (aq,a9) such that

)= (/(

1 1/2

2

+ |u —d , 4
Jul > T y) (4)
is minimized.

Kosloff et al [25] have considered the first following order hyperbolic initial
boundary value problem

2
+

£
dx?

du

dx

2 2

2
dy?

du

dy

up — Uy = 0, —l<xz<l, t>0,
u(z,0) = wup(z), —-1l<z<l,
u(l,t) = s(t) t>0,

and, have generalized it in the second order case.The collocation points are
found from the stretching of regular Chebychev collocation points. Precisely, if
x is the physical coordinates and y its transformed ones, then one can write

x:g(y;a):%rf((f)); 0<a<l =z,yel-11], (5)
where « is a parameter of the stretching function g(y;«a). The identity is re-
covered when o — 0. The interest of (5) is to transform the Gauss-Lobatto
y; points into equally spaced x; points when o« — 1. This limit is singular so
that the optimal use of the transformation corresponds to values of « closed
to 1, with a = cos (kw/N) where N is the polynomial degree and k > 1. The
differentiation of a function u is written by

du 1 du
- = 7 3 6
dr g (y)dy (6)
where
/ [0

9 (y;0) = :
arcsin /1 — (ay)?
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Consequently, the first order differentiation operator D is replaced by D= AD

where A is a diagonal matrix with entries A;; = ﬁ and y; = cos (%)
g \Yi, &
The second order differentiation is

Pu_ 1 Pu gy du @)
@@ (g W)W (g () W

and the second order derivative operator is replaced by 13; = A%D, + BD
where A2 = A x A and B represents the diagonal matrix with entries By =

"

_ 9 W)
(9" (yi;0))°

Kosloff et al. [25] have verified that the eigenvalues of the matrix D are
insensitive with respect to perturbations. The evaluation of the matrix 172 for
various values of N and « shows that matrices Do are nearly well-conditioned.
The transformation decreases the spectral radius of the differential operator of
(@) (NQ) in O (N), increases timestep from O (N_2) to O (N_l) for hyperbolic
problems and from O (N *4) to O (N *2) for those parabolic.

In 1992, several coordinate transformations were compared [5] based on the
tangent function judges numerically to be the best:

x = [f(y,a1,a2) = a1 + agtan [A (y — yo)] (8)

-1 t 1
K ’H:arc an [( +CL1)/CL2]’ and
k+1 arctan [(1 — a1) /az]

with yg =

N arctan [(1 + a1) /as]
L —yo '

In the region of rapid variation, characterized by =z = a1 and y = yo, one
has [ (yo,a1,a2) ~ wag/2 if aa — 0. Under these conditions, the inverse
y = g(x,a1,a2) gives an approximation of a quasi-step function with a near-
discontinuity at x = a;. For large values of ag, the transformation (8) is closed
to the identity.

The Chebyshev polynomial approximation is naturally well-adapted to the
representation of boundary layers. It may happen, however, that the thickness
of the boundary layer is so small that a high-degree polynomial is necessary to
capture it accurately. Then, it is advisable to introduce an adapted mapping.
The coordinates transformation (8) is singular for boundary layers, namely for
a1 = +1.



744 S. Ndeuzoumbet, B. Mampassi

An alternative mapping has been employed with success for various prob-
lems dependent of the one parameter:

4
x:f(?/aa):;tanfl atan%(?/—l) + 1. (9)

It maps the interval —1 < x < 1 onto —1 < y < 1 with f'(—1,a) = 1/a and
' (1,a) = a. Therefore, the coordinates transformation (9) is adapted to the
capture of the boundary layer near x = —1 where a > 1 and near x = 1 where
a<1.

The effectiveness for transformations (5), (8) and (9) in pseudo-spectral ap-
proximations were compared [5], the approach was to build the pseudo-spectral
polynomial for the transformed function and then to measure the maximum
norm of the error. This maximum norm of the error is then computed by com-
paring the approximating polynomial and the given function over a large grid
of points then they computed the discrete Lo norm of the error in the new
coordinate system. Numerically, the transformation (8) appears more effective
than (5) and (9).

3. Rational Adaptive Spectral Methods

Adaptive rational spectral methods are based on rational interpolants and adap-
tive grid collocation points to solve problems whose solutions present singular-
ities in the complex plane. We notice that it is more accurately to approach
functions with localized regions of rapid variation in some domains by rational
functions than by polynomials with the same number of degrees of freedom.

3.1. Linear Rational Interpolants
Berrut et al. [7] have developed spectral methods based on rational interpolants

by using a barycentric formulation. This form r that interpolates a function f
at N + 1 distinct points xg, 1,...,xx on the interval [—1,1] is

(10)

>
r — X
k=0 k

where wg, wi,..., Wy, are nonzero numbers called barycentric weights. At the
Chebyshev points, one has wy = ¢/2, wy = c(—l)k, for k =1,2,..., N — 1 and
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wy = (—1)Y ¢/2 for a same constant ¢ [10]. An other method for calculating
barycentric weights is proposed in [6].

The derivatives of r can serve to determine the nth order differentiation
matrix (D(")> associated with r represented by (10) at the points z; :

Wk
(n) N dqn T — ) (xk) N (n)
Tn(xﬂ):Z? ~ EZD]kf({lfk), j=0,..,.N
k=0 wi k=0
Tr — a2
=0 T=x;

(11)
This expression enable to compute the differentiation matrix D™ for various
values of n if f is known or unknown at Chebyshev points. The entries of the
first and second order differentiation matrices are [27]:

#k’ lfj#ka j7k20717°'N7

n _

DY) = o (12)
- > D}, ifj=k,
i=0 ik

and

1
QDﬁ) (Dj(;)— > if j#k j,k=0,1,..,N
D(Q) B N €Tj— Tk
Jk (2) e
_ Z D3, if j = k.
i=0 ik

(13)

The entries of the nth order differentiation matrices of the algebraic rational
interpolants 7 in their form (10) are [30]:

n Wk ~(n—1) (n—1)> e . )
" (“Epl-h_pl i ks
pm _ (2 — ) <Wj v " 7

jk
Tl - X o ity ="k
1=0 i£k

(14)

where DO is the identity matrix.

Berrut et al. [8] have considered the interpolation problem of a continuous
function at N + 1 distinct points xg, x1,...,xx in the interval [—1,1] to solve
the problem with boundary conditions. Let P,, and R,,, be respectively the
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linear space of all polynomial degree < m and the set of all rational functions
with the numerator of degree < m and the denominator of degree < n.

Let P (P < N) be the number of the poles z;, i = 1,.., N, connected to
polynomial of denominator of the set R,,,. If the same rational interpolant
r € Ry, p exists with the poles z;, so the denominator takes at the points z;
the following values:

P
dy, == aH (xp — zi) s (15)

where ¢ is an arbitrary nonzero complex constant, and the values of numerator
to the same points frdy. By using (10), we get:

N P o,
y el sl

r(x):= k=0 S (16)
i we [1F (2x — 1)
A T — Tk

The expression (16) is affected to weights vy = wy, Hf (xr — z;) and exist for
all rational interpolants r in Ry n [9] and can be written as follows

jZOIE—.CCj
@) = (17)

J

jzox—:rj

the numbers 3; are arbitrary by reason of one per node. This form is employed
for the classical problem of rational interpolation whose poles are described
previously.

As example, we consider the problem of finding the solution of the following
differential equation

W (2) + pla)u (2) + qla)u(z) = hiz), = €] - 1,1],
(18)
W-1) =, u(l) =,

where functions p, ¢, and h are chosen such that the problem is well-posed, and
u; and u; are given real numbers. By reason of presence in the problem of non-
homogeneous boundary values, the restriction is made at the node containing
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the ends —1 and 1 for g fixed 8 = [Bo, b1, ...ﬁN]T. The functions

B

x—xj

N

> A
r — T

k=0

LY (@) = i=01,..,N (19)

)

form a basis in the space Rg\é of all interpolants and satisfy the following La-

grange property LS-’B ) (xj) = 6;5. The solution of the equation (18) as interpolant

by linear rational collocation method at the points x; is expressed by

N
i)=Y uwL{" (). (20)
§=0
then we have the equation
N B N ) N
SouwL @)+ p@) Y wLi? (@) +a(0) YL (@) = @) (21)
§=0 §=0 §=0
which provide a system of equations for unknown values u1,..., uy_1 of u at

the Chebyshev points z1,..., zxy—1 (up and uy being known from boundary
conditions) by setting

ZuJL“ i) + (i) Zu]L“ ZUJLW = h(z;), (22)
7=0

for i =1,..., N — 1. This system of linear equations can be written as
Au=h, (23)
where we have set

A=D® +PDW +Q; u=[uy,ug,....,un_1]", (24)
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with
D = (DY), DY =L @)
i s ij 3 i)
B (2) @\ _ 78"
D@ = (D). (D7) =1 (@),
P = diag (p(z:)), Q= diag(q(xi)), (25)
ho = [ — e (L @) + o2l @)
" ’ T
— o (L @) + )L )]
for i,5=1,....N — 1.

The advantage of the barycentric representation is the simplicity of the formula
for the entries of the matrices D and D®) as analogues of (12) and (13).
The reason of the efficiency of the method in the polynomial case based on
the spectral exponential convergence of u toward u, provided that all functions
resulting in the problem are analytic within ellipses containing the interval
[—1,1] in their interior.

3.2. Adaptive Rational Spectral Methods

Tee et al. [31] have presented the spectral collocation method that uses adap-
tively transformed Chebyshev nodes. This method is based on the exponen-
tial convergence of rational approximations which interpolates at transformed
Chebyshev nodes of the form

poo ki _ikl)k Cm—g (_ cos (’%)) . (26)

Here, the interpolation points are the images of the Chebyshev points by a
conformal map ¢ defined of [—1,1] on itself and such as f o g is analytical on
an appropriate neighborhood of the complex plane.

The expression (26) has been exploited to prove theorems on the exponential
convergence of rational functions [2] and its derivatives [30].
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The authors [31] have considered solutions with a relevant front, and have
constructed g using two singularities of the solution, § & €z, that are symmetric
with respect to the real line. The proposed conformal map is:

g(2) =9 + esinh <(sinh_1 <1 _5> + sinh™? (1 +5>> 21
€ € 2
+sinh ™! (1_5>>, (27)
€

where sinh™! is the inverse of sine hyperbolic. Once the grid adapted as z, =
g (— cos (%)), the rational interpolant is used with differentiation matrices
given by the expression (14). By using the map (27), they have proposed for
the approximate location of singularities in the complex plane and conformal
mapping in order to transform the Chebyshev grid into one that adaptively

clusters points near steep gradients of the solution (singular lines).

Two evolution problems were to be solved via the algorithm [31]: Franck-
Kamenetskii or Gelfand called blow up (reaction-diffusion) and viscous Burgers
equations [31]. They are discretized temporally using the adaptive Runge-
Kutta 5.4 method [14] and its variants for nonstiff time-dependent and stiff
problems [22, 23]. Solutions are determined by the Chebyshev and adaptive
rational spectral methods for various values of V. In both examples, the sharp
features of the solution evolve in time and the explicit time marching allows of
the singularities. Numerically, the singularity location requires the definition
of a local approximation of the solution, which is used to approximate the
poles using the Chebyshev Padé process. This is done by selecting an interval
around the previously computed poles d €z, such as I = [§ — £, — &] with £ =
min (10¢,1 — [4]). The solution is interpolated at the N + 1 Chebyshev points
in the interval I, the singularities domain provides the new poles. The new
value of € is multiplied by a factor equal to 0.75. After the above approach, the
minimum limit value of € is € = max (€g, €*, €min ), where ¢q is the value provided
by singularities of the domain due to Chebyshev Padé approximation, €* is a
value that progressively decreases in the process, and €y, is a minimum limit
value due to the explosive growth of the condition number of the differentiation
matrices for small values of e.

W. Tee [30] have developed these adaptive rational spectral methods to
solve the periodic and nonperiodic differential equations.

For nonperiodic problems, the transformation can be done into two stages.
The first one appeared in the article of Szegé [28] attributed to Schwarz, which
maps the interior of the ellipse £, to the unit disk by the following transforma-
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tion:
2K
hy (z) = v/msn (ﬂ arcsin(z) | m) (28)
™
where sn (- | m) is the Jacobi elliptic sine function defined in [1]
sn(z|m)=sin(¢p) (29)

and

¢ df
- / , (30)
0 /1—msin? ()
with m € ]0,1[ is an elliptic parameter. The conformal map (28) maps the
interval [—1,1] into the interval [—/m, /m|, and the elliptic parameter m

satisfies

where K(m) and K’'(m) are the complete elliptic integrals of the first kind
and second kind respectively [1]. They are implemented in MATLAB routines
ellipj, ellipke for real and ellipjc for complex arguments [15].

The second stage is the mapping of the unit disk, the analytical region of
f into a slit Ss1,c in which f is analytic and defined by

S5 :(C\{[é—ze,é—ZOO]U[(S—I—Ze,é—i—Zoo]}, (32)

where € > 0. The use of the Schwarz-Christoffel formula [17], the expression
(28) becomes

cos(f) 1+ Cos(@)) (33)

]__
hQ(Z)_A_C< 2-—1) 211

where the four unknowns A, C, # and m can be determined under the following

conditions:
hy (—v/m) = =1, hy (¥/m) =1, (34)
%(hg (21)) == 5, and < (hg (21)) =€ (35)
with z; = exp («0).
Thus, the conformal map g = ho o h1 maps the interior of the ellipse E,

into a plane slit S5y, (for illustration, see [24]).
In the periodic case, the problem is to map an infinite horizontal slit

S540e = C\ U (6 4 2j7) £ 1€, (8 + 2j7) £ 200] (36)

]_700
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that is symmetric around the real axis of the region of analyticity of the function
f thanks to the transformation

g (z) =0 + 2arcsin <\/(m _ 1)[‘9?2(%(2 - 5)|m)> ’

where m is the elliptic parameter given by m = sechQ(g).

4. Chebfun System

Chebfun is a software system written in object-oriented MATLAB. It was
implemented in a 2004 paper [3] for the smooth functions on the interval [—1, 1]
with the aim of building some links between the discrete and continuous linear
algebra in particular to extend the MATLADB operations made on vectors and
matrix in the functions and the operators.

The basis of Chebfun is Chebyshev polynomials [33, 34]. Chebfun computes
Chebyshev coefficients by examining them in the machine precision of a function
g and represents it to the Chebyshev points by using barycentric interpolation
[10]. For example, we can obtain the Chebyshev coefficients a; in Chebfun
corresponding to exp(x):

>>g=chebfun(@(x) exp(x));
>>[length(g)]
ans =
15
>>Coef=chebpoly(g) ;% compute the Chebyshev coefficients

1.266065877752008
1.130318207984970
0.271495339534077
0.044336849848664
0.005474240442094

0.000542926311914
0.000044977322954
0.000003198436463
0.000000199212481
0.000000011036772

0.000000000550590
0.000000000024980
0.000000000001039
0.000000000000040
0.000000000000001

Note that the last coefficient is about the level of machine precision fixed ap-
proximatively at 10~'°. The indication length means that 15 is the number of
Chebyshev points necessary to represent this function to the machine precision.
Then, the function ¢ is approximated by the polynomial of degree 14.

The commands like diff, sum and norm of MATLAB allow to compute the
derivative, the definite integral and the norm respectively. Also, there was an
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implementation of the continuous and piecewise functions, the notions of linear
algebra including functions such as QR decomposition of a matrix A which
spells A = QR where @ is an orthogonal matrix and R an upper triangular
matrix and, the singular value decomposition process SV D of a matrix A which
factorizes like A = USVT where U in is the same size that A, S size n x n and
diagonal with the entries non negative, V' size n x n and orthogonal.

Chebfun have the capability to solve the nonlinear partial differential and
ordinary differential equations [16]. If p is a polynomial of degree n, it is
determined by its values on the (n + 1) point Chebyshev grid in [—1,1]. The
derivative p/, a polynomial of degree n — 1 is determined by its values on the
same grid. The spectral differentiation matrix associated with this grid is the
(n+1) x (n+ 1) matrix that represents the linear map from the vector of values
of p on the grid to the vector of values of p’. For example, we can calculate the
values of p’ on the same grid by the command diff (p). But we can also obtain
on the differentiation matrix explicitly with the commands:

>>[d,x]=domain([-1 1]);%domain of computation
>>D=diff (d); %Chebyshev differentiation operator
>>D15=D(15); %Discrete matrix of size 15x15

Generally, D=diff (d,n) for n > 2 definite the nth order of Chebyshev differ-
entiation matrices, eye identity matrix. If D is applied to an integer argument,
the matrix of that dimension is produced. Thus, the differential operator cor-
responding to the map

L:u—u"+4 +100u on [-1,1]

is
L(5)= diff(d,2)+diff (d)+100*eye.

Here is the 5 x 5 realization of this operator

111.5000 -21.6569 16.0000 -10.3431  4.5000
7.5355  86.7071 7.4142 -2.7071 1.0503
-0.5000  2.5858 94.0000 5.4142  -1.5000
0.4645  -1.2929 4.5858 85.2929  10.9497
5.5000  -12.6863 20.0000 -35.3137 122.5000

If we impose boundary conditions (bc), the standard way of doing this is to
modify one or more initial or final rows of the matrix, one row for each boundary
condition [32, 34].
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5. Concluding Remarks

Common features to adaptive rational spectral methods and Chebfun are the
barycentric formulation of algebraic interpolants. Most of these methods are not
extended to the resolution of differential equations in the domains to complex
geometries and in higher dimensions.
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