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Abstract: We study the numerical evaluation of integrals involving scaling
functions from the Cohen-Daubechies-Vial (CDV) family of compactly sup-
ported orthogonal wavelets on the interval. The computation of the wavelet
coefficients is performed by a weighted Gaussian quadrature, in conjunction
with the Chebyshev and modified Chebyshev algorithms. We validate the pro-
posed quadratures with the numerical approximation of a Fredholm integral
equation of second kind by the Galerkin method with CDV scaling functions
as basis functions.
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1. Introduction

The solid and elegant theoretical background and the design of efficient algo-
rithms for a wide range of applications in sciences and engineering have turned
wavelet theory into one of the pillars of computational mathematics. Among the
several contributions to this field, we point out the classical families of wavelet
functions proposed by I. Daubechies [4, 5], which preserve the orthogonality
and the compactness of support from the Haar system but provide increasing
regularity (see, e.g., [4, p. 226]).
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Unlike the Haar system, it is not trivial to construct a basis for square-
integrable functions in an interval (say L2([0, 1])) from the Daubechies family.
One of the most successful constructions was proposed by Cohen, Daubechies,
and Vial (CDV, [2]), which we consider in this work. The motivation for revis-
iting the CDV wavelet basis is the increasing popularity of Wavelet-Galerkin
methods for integral equations on bounded intervals [8, 14, 17].

Another interesting property of the Haar system, which is not preserved on
compactly-supported orthogonal wavelets with higher regularity, is that a closed
formula is available for the scaling function (namely, φHaar(x) = χ[0,1](x), where
χI(·) is the characteristic function over the interval I). The Daubechies and
CDV scaling functions are indirectly given by scaling (or refinement) equations
in the form

φ(x) =
∑

n∈Z

cnφ(2x− n).

How to compute an integral that involves a function defined by a scaling
equation? This is a crucial task in wavelet analysis. Even though most inte-
grals may be avoided by means of recursive pyramid algorithms, they must be
performed in at least in one refinement level.

Several authors have considered this problem ([3, 16], among others). In
particular, Barinka et al. [1] proposed a modified Gaussian quadrature which is
well suited to inner products of smooth functions and (non necessarily smooth)
wavelets. The Gaussian quadrature is modified in the sense that the integration
points and weights are found with respect to a weighting function chosen as the
scaling or the wavelet function. Barinka et al. employed this approach to
derive quadrature rules for cardinal B-splines. Later on, Maleknejad et al. [10]
employed the same approach on the Daubechies’ family of classical, extremal
phase wavelets [4].

In this work, we follow the methodology proposed by Barinka et al. to
derive weighted Gaussian quadratures to integrals involving CDV scaling func-
tions. Since the CDV functions were developed from the Daubechies’ least-
asymmetric (i.e., symmlet) family [5], it is natural to consider [10] as a starting
point. The algorithm proposed therein is improved by avoiding the evaluation
of determinants with the aid of the Chebyshev algorithm [7] and by a more
convenient selection of the support of the interior scaling functions.

The paper is organized as follows: Section 2 reviews the work in [1] in the
context of the Daubechies’ family of wavelets and proposes improvements over
the approach in [10]. In Section 3, we consider the CDV basis. For this purpose,
we also need the modified Chebyshev algorithm [6, 15]. Section 4 illustrates
the effectiveness of the proposed quadrature in the numerical approximation
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of a homogeneous Fredholm integral equation of second kind by the Galerkin
method with the CDV basis.

2. Gaussian Quadratures for Daubechies’ Functions

Let us consider a function φ ∈ L2(R), which we refer to as the scaling function,
such that {φj,n(x) = 2j/2φ(2jx−n), n ∈ Z} is an orthonormal set for any j ∈ Z,
and the family of subspaces (Vj | j ∈ Z) ⊂ L2(R) defined as Vj = span {φj,n}n∈Z
defines a multi-resolution analysis, i.e.,

1. Vj−1 ⊂ Vj for any j ∈ Z;

2.
⋂

j∈Z Vj = {0};

3.
⋃

j∈Z Vj = L2(R);

4. f(x) ∈ V0 ⇐⇒ D2jf(x) := f(2jx) ∈ Vj for any j ∈ Z.

In particular [4, Prop. 5.3.1], there exists a sequence hk ∈ l2(Z) such that
the following scaling equation holds:

φ(x) =
∑

n∈Z

√
2hnφ(2x − n).

Moreover, there exists a (non-unique) sequence gk ∈ l2(Z) such that the
function

ψ(x) =
∑

n∈Z

gnφ(2x− n)

generates, for each j ∈ Z, a set of orthonormal functions ψj,n(x) = 2j/2ψ(2jx−
n), n ∈ Z, whose span Wj satisfies Vj+1 = Vj ⊕Wj. The function ψ is known
as the mother wavelet associated with φ. Given J > 0, we can write VJ =
V0⊕W0⊕W1⊕ . . .⊕Wj−1, which yields the following multiscale representation
for the orthogonal projection of a function f ∈ L2(R) into VJ :

f(x) =
∞
∑

n=−∞

d0,nφ0,n(x) +
J−1
∑

j=0

∞
∑

n=−∞

fj,nψj,n(x),

where the coefficients dj,n and fj,n are given as

dj,n =

∫ ∞

−∞

f(x)φj,n(x) dx, fj,n =

∫ ∞

−∞

f(x)ψj,n(x) dx.
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We focus in the case where supp(φ), the support of φ, is compact (and so
is supp(ψ)), which implies that only a finite number of coefficients hk and gk
is non-zero. We can use Mallat’s algorithm [11] to compute all the coefficients
d0,n and fj,n (0 ≤ j ≤ J − 1) by evaluating only the integrals

dJ,n =

∫ ∞

−∞

f(x)φJ,n(x) dx = 2−J/2

∫

supp(φ)
f(2−J(t+ n))φ(t) dt. (1)

Barinka et al. [1] considered a weighted Gaussian quadrature rule satisfying
∫

supp(φ)
g(x)φc(x) dx =

r
∑

l=1

wc
l g(x

c
l ) ∀g ∈ P2r+1. (2)

The weighting function is defined as φc(x) = φ(x) + cχsupp(φ)(x), where c
is a positive constant that is chosen in order that φc is a non-negative function
(Barinka et al. refer to this procedure as the lifting trick). Herein, Pm denotes
the space of real polynomials of degree m and χI(·) denotes the characteristic
function over an interval I. Integrals of the form (1) can be approximated with
the aid of (2) since

∫

supp(φ)
g(x)φ(x) dx =

r
∑

l=1

wc
l g(x

c
l )− c

r
∑

l=1

wχ
l g(x

χ
l ), ∀g ∈ P2r+1,

where the integration points and weights xχl and wχ
l (1 ≤ l ≤ r) are given by the

standard Gauss-Legendre quadrature mapped to supp(φ). On the other hand,
the integration points xc1, . . . , x

c
r are the roots of the r-th term of the sequence

of orthogonal polynomials {Pn(x)}∞n=0 satisfying L[PnPm] = 0 for n 6= m and
L[P 2

n ] 6= 0, where

L[f ] =
∫

supp(φ)
f(x)φc(x) dx.

These points are the eigenvalues of the Jacobi matrix

Jr =



















c1
√
λ2 0√

λ2 c2
√
λ3√

λ3 c3
√
λ4

. . .
. . .

. . .
√

λr−1 cr−1

√
λr

0
√
λr cr



















, (3)

where cn and λn (n ≥ 1) are the coefficients of the three-term recurrence relation

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x), n ≥ 1, (4)

P−1(x) = 0, P0(x) = 1.
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The quadrature weights wc
l = λ1u

2
l,1, where ul = [ul,1, . . . , ul,r]

T is the nor-
malized eigenvector of Jr corresponding to the eigenvalue xcl . The parameters
cn and λn are usually calculated from the moments of the weighting function,

µck =

∫

supp(φ)
xkφc(x) dx = µk + c

∫

supp(φ)
xk dx, (5)

where µk, 0 ≤ k ≤ 2r − 1, are the moments of the scaling function:

µk =

∫

supp(φ)
xkφ(x) dx.

Maleknejad et al. [10] considered the case when φ = φD,N and ψ = ψD,N

are respectively the classical Daubechies scaling function and mother wavelet
[4] with N vanishing moments, i.e.,

∫ 2N−1

0
xnψ(x) dx = 0, n = 0, 1, . . . , N − 1. (6)

Therein, the support of φ is the interval [0, 2N − 1], in order that they seek
{wc

l , x
c
l , w

χ
l , x

χ
l } such that

∫ 2N−1

0
g(x)φ(x) dx =

r
∑

l=1

wc
l g(x

c
l )− c

r
∑

l=1

wχ
l g(x

χ
l ), ∀g ∈ P2r+1. (7)

It follows that

xχl =
2N − 1

2
(ξl + 1), wχ

l =
2N − 1

2
wl, (8)

where ξl and wl (1 ≤ l ≤ n) are the Gauss-Legendre points and weights, respec-
tively. In order to construct the Jacobi matrix (3) that yields the quadrature
points and weights wc

l and xcl , the recursion coefficients cn and λn are com-
puted in [10] through moment determinants [7, Thm. 2.2]. The moments of
the weighting function (5) reduce to

µck =

∫ 2N−1

0
xkφc(x) dx = µk + c

(2N − 1)k+1

k + 1
, (9)

whereas the moments

µk =
2−k

1− 2−k

k−1
∑

j=0

(

k
j

)

mk−jµj (10)

are defined in terms of the following discrete moments:



762 J.S. Azevedo, S.P. Oliveira, F. Wisniewski

mj =
1√
2

2N−1
∑

n=0

njhn. (11)

We propose two changes in the approach from [10]: we build the Jacobi
matrix (3) without resorting to moment determinants (this is achieved by using
the classical Chebyshev algorithm [6, Sec. 2.3]) and we shift the support of φ
from [0, 2N−1] to the interval [−N+1, N ], i.e., we consider ϕ(x) = φ(x+(N−1))
and seek {wc

l , x
c
l , w

χ
l , x

χ
l } such that

∫ N

−N+1
g(x)ϕ(x) dx =

r
∑

l=1

wc
l g(x

c
l )− c

r
∑

l=1

wχ
l g(x

χ
l ) ∀g ∈ P2r+1. (12)

The integration points and weights xχl and wχ
l (1 ≤ l ≤ r) are now given

by the Gauss-Legendre quadrature mapped to the interval [−N + 1, N ], i.e.,

xχl =
2N − 1

2
ξl +

1

2
, wχ

l =
2N − 1

2
wl.

The moments of the weighting function (9) now become

µck = µk + c
Nk+1 − (1−N)k+1

k + 1
, µk =

∫ N

−N+1
xkϕ(x) dx.

In order to compute the moments µk, we multiply the scaling equation

ϕ(x) =
N
∑

n=−N+1

√
2hnϕ(2x− n)

by xk and integrate it from −N + 1 to N :

µk =
N
∑

n=−N+1

√
2hn

∫ N

−N+1
xkϕ(2x− n) dx.

After a change of variables in the integral, and using the fact that supp(ϕ)
= [−N + 1, N ], we find

µk =
1√
2

N
∑

n=−N+1

hn

∫ N

−N+1

(

t+ n

2

)k

ϕ(t) dt.

With the aid of the binomial expansion of ((t+ n)/2)k, we arrive at
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µk =

k
∑

j=0

(

k
j

)

mk−j

∫ N

−N+1

(

t

2

)j

ϕ(t) dt =

k
∑

j=0

2−j

(

k
j

)

mk−jµj,

where the new discrete moments mj are defined as

mj =
1√
2

N
∑

n=−N+1

(n

2

)j
hn. (13)

Similarly to [1, 10], we use the fact that m0 = 1 to obtain

µk =
1

1− 2−k

k−1
∑

j=0

2−j

(

k
j

)

mk−jµj. (14)

Note that the factors nj (0 ≤ N ≤ 2N − 1) from the discrete moments mj

in (11) grow more rapidly than the factors (n/2)j from (13), where −N + 1 ≤
n ≤ N (see also [15, p. 466]). Thus, we expect that (13)-(14) is less susceptible
to the amplification of roundoff errors than (10)-(11).

Let us contrast the computations described herein with the procedure out-
lined in (6)-(11). In analogy with [10, Tab. 9], Fig. 1(a) shows the absolute
errors ek = |µk − µ̃k| between the exact moments µk in (10) and the approxi-
mate moments µ̃k obtained by expression (7) with g(x) = xk. We employ the
scaling coefficients and constants for the “lifting trick” presented in Tables 1
and 4 of [10]. In addition to r = 7 (solid lines), we also consider r = 16 (dashed
lines), for which the accuracy of (10) is lost. Afterwards, we compute µ̃k from
(12) with g(x) = (x + (N − 1))k. As shown in Fig. 1(b), this approach was
more robust than the approach presented in (6)-(11).

3. Gaussian Quadratures for the CDV Basis

Let us briefly review the CDV scaling functions. The starting point is the

Daubechies’ symmlet [5] scaling function φ. Note that the coefficients hk = h
(N)
k

are now different from [10, Tab. 1-2].
Let us consider a scaling parameter j ∈ Z large enough so that 2j−2N ≥ 0,

and introduce the 2j − 2N interior scaling functions

φintj,n(x) = 2j/2φ(2jx− n), N ≤ n ≤ 2j −N,

with support within [0, 1]. The next step is to add N functions at each end
of the boundary. At the left end, we introduce the left edge scaling functions
φleftj,n (x) = 2j/2φleftn (2jx) for 0 ≤ n ≤ N − 1, where
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Figure 1: Error ek = |µk − µ̃k| of the continuous moments with N =
2, . . . , 5, considering r = 7 (solid lines) and r = 16 (dashed lines).
Figures (a) and (b) refer to quadratures (7) and (12), respectively.

2−1/2φleftn (x) =

N−1
∑

l=0

H left
n,l φ

left
l (2x) +

N+2n
∑

l=N

H left
n,l φ(2x− l), (15)

whereas for the right end we consider, for −N ≤ n ≤ −1, the right edge scaling
functions φrightj,−n (x) = 2j/2φright−n (2jx),

2−1/2φrightn (x) =

−1
∑

l=−N

Hright
n,l φrightl (2x) +

−N−1
∑

l=−N+2n+1

Hright
n,l φ(2x− l). (16)

We have that supp(φleftn ) = [0, N + n] ⊂ [0, 2N − 1] for 0 ≤ n ≤ N − 1 and

supp(φrightn ) = [n−N +1, 0] ⊂ [−2N +1, 0], n = −1, . . . ,−N . The coefficients

H left
n,l and Hright

n,l , as well as the symmlet scaling coefficients hk, have been
tabulated for several values of the parameter N and are available, for instance,
at http://www.nr.com/contrib/.

The family of subspaces (Vj)j≥1+log
2
(N), Vj = {θj,n(x)}2

j−1
n=0 , where

θj,n(x) =

{

φleftj,n (x), n = 0, . . . , N − 1,

φintj,n(x), n = N, . . . , 2j −N − 1,
(17)

θj,2j−n(x) = φrightj,−n (x− 1), n = 1, . . . , N,

is dense in L2([0, 1]) [2].
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In this work, we focus in a single member VJ of the family (Vj), i.e., we seek
Gaussian quadratures for integrals in the form

dJ,n =

∫

supp(θJ,j)
f(x)θJ,n(x) dx. (18)

When n = N, . . . , 2J −N − 1, we have that (18) reduces to

dJ,n = 2−J/2

∫ N

−N+1
f(2−J(t+ n))φ(t) dt.

The procedure to compute the quadrature points and weights for any g ∈
P2r+1 such that

∫ N

−N+1
g(x)φ(x) dx =

r
∑

l=1

wc,int
l g(xc,intl )− cint

r
∑

l=1

wχ,int
l g(xχ,intl ),

is the same as in (12)-(14). The only difference is the positive constant cint in
the auxiliary weighting function

φc,int(x) = φ(x) + cintχ[−N+1,N ](x), (19)

which must be updated according to the symmlet scaling function. The values
of cint = cintN with N = 2, 3, 4 were found using a standard cascade algorithm
[4] and are given as follows:

cint2 = 0.36602, cint3 = 0.38635, cint4 = 0.32296.

For n ≤ N − 1, we have

dJ,n =

∫ ∞

−∞

f(x)2J/2φleftn (2Jx) dx = 2−J/2

∫ 2N−1

0
f(2−J t)φleftn (t) dt.

In analogy with (19), the weighting function φcn is defined as

φcn(x) = φleftn (x) + cleftn χ[0,2N−1](x) (0 ≤ n ≤ N − 1),

where the constants cleftn (Table 1) are estimated by evaluating the left edge
functions as described in the appendix. We consider a quadrature in the form

∫ 2N−1

0
g(x)φleftn (x) dx =

r
∑

l=1

wc,left
l,n g(xc,leftl,n )− cleftn

r
∑

l=1

wχ,left
l g(xχ,leftl ) (20)
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cleft0 cleft1 cleft2 cleft2

N = 2 1.09955 0.35627

N = 3 1.23758 0.91284 0.400477

N = 4 0.04959 0.92431 0.261993 0.15470

Table 1: Left edge constants cleftn , 0 ≤ n ≤ N − 1.

for any g ∈ P2r+1, where the integration points and weights xχ,leftl and wχ,left
l

(1 ≤ l ≤ r) associated with the characteristic function χ[0,2N−1] are the same
as in (8).

Taking into account Fig. 1(a), the fact that the support of the left edge
functions is within [0, 2N − 1] may lead to numerical instabilities. For this
reason, we consider the modified moments

µcn,k = µleftn,k + cleftn

Nk+1 − (1−N)k+1

k + 1
, (21)

µleftn,k =

∫ 2N−1

0
(x− (N − 1))kφleftn (x) dx (22)

for 0 ≤ n ≤ N − 1. These moments are defined with respect the polynomial
sequence pk(x) = (x− (N − 1))k, which satisfies the recursive relation

pk+1(x) = (x− ak)pk(x)− bkpk−1(x), ak = N − 1, bk = 0 (23)

for k ≥ 0, and p−1(x) = 0 and p0(x) = 1. The entries cn and λn of the Jacobi
matrix (3) are now computed with the modified Chebyshev algorithm [7, Sec.
2.4]. Let us proceed with the computation of the modified moments (22). We
have from (15) that

µleftn,k = 21/2
N−1
∑

l=0

H left
n,l

∫ 2N−1

0
(x− (N − 1))kφleftl (2x) dx

+ 21/2
N+2n
∑

l=N

H left
n,l

∫ 2N−1

0
(x− (N − 1))kφ(2x− l) dx.

By changing variables in the integrals above, we arrive at

µleftn,k = 2−1/2
N−1
∑

l=0

H left
n,l

∫ 4N−2

0

(

t

2
− (N − 1)

)k

φleftl (t) dt

+ 2−1/2
N+2n
∑

l=N

H left
n,l

∫ 4N−l−2

−l

(

t+ l

2
− (N − 1)

)k

φ(t) dt.



WEIGHTED GAUSSIAN QUADRATURES FOR... 767

Since supp(φ) ⊂ [−l, 4N − l− 2] for any N ≤ l ≤ N +2n and supp(φleftl ) ⊂
[0, 4N − 2] for any 0 ≤ l ≤ N − 1, we have that

21/2µleftn,k =

N−1
∑

l=0

H left
n,l

∫ 2N−1

0

(

t

2
− (N − 1)

)k

φleftl (t) dt

+
N+2n
∑

l=N

H left
n,l

∫ N

−N+1

(

t

2
+
l

2
− (N − 1)

)k

φ(t) dt.

We again use the binomial formula and consider the moments (14) to con-
clude that

21/2µleftn,k =
N−1
∑

l=0

H left
n,l

k
∑

j=0

(

k
j

)(

1−N

2

)k−j

2−jµleftl,j

+

N+2n
∑

l=N

H left
n,l

k
∑

j=0

2−j

(

k
j

)(

l

2
− (N − 1)

)k−j

µj

=

k
∑

j=0

(

k
j

)(

1−N

2

)k−j

M left
n,j +

k
∑

j=0

2−j

(

k
j

)

mleft
n,k−jµj ,

where, in analogy with (13),

M left
n,j = 2−j

N−1
∑

l=0

H left
n,l µ

left
l,j , mleft

n,j =
N+2n
∑

l=N

(

l

2
− (N − 1)

)j

H left
n,l .

Thus we have, for each k ≥ 0, the linear system

21/2µleftn,k −
N−1
∑

l=0

H left
n,l

2k
µleftl,k =

k−1
∑

j=0

(

k
j

)(

1−N

2

)k−j

M left
n,j

+
k
∑

j=0

2−j

(

k
j

)

mleft
n,k−j µt (0 ≤ n ≤ N − 1).

Once we find the moments µleftn,k , we evaluate the moments of the weighting
function from (21) and apply the modified Chebyshev algorithm to recover the

quadrature points xc,leftl,n and weights wc,left
l,n for φcn(x).

It remains to compute the right-end coefficients

dJ,2J−n = 2−J/2

∫ 0

−2N+1
f(2−J t+ 1)φright−n (t) dt (1 ≤ n ≤ N).
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Again, for the “lifting trick” we define

φcn(x) = φrightn (x) + crightn χ[−2N+1,0](x) (−N ≤ n < −1).

The positive constants crightn (Table 2) are chosen such that φcn > 0 and
evaluated as described in the appendix. We seek, for −N ≤ n < −1,

∫ 0

−2N+1
g(x)φrightn (x) dx =

r
∑

l=1

wc
l,ng(x

c
l,n)− crightn

r
∑

l=1

wχ,right
l g(xχ,rightl )

for any g ∈ P2r+1. The integration points and weights xχ,rightl and wχ,right
l

(1 ≤ l ≤ r) are given by the Gauss-Legendre quadrature mapped to the interval
[−2N + 1, 0], i.e.,

xχ,rightl =
2N − 1

2
(ξl − 1), wχ,right

l =
2N − 1

2
wl.

cright−1 cright−2 cright−3 cright−4

N = 2 0.0000 0.42407

N = 3 0.0000 0.73006 0.16226

N = 4 0.0302 1.12700 0.22025 0.18134

Table 2: Right edge constants crightn , −N ≤ n < −1.

We consider the modified moments of the weighting function with respect
to pk(x) = (x+N)k,

µcn,k = µrightn,k + crightn

Nk+1 − (1−N)k+1

k + 1
(−N ≤ n < −1),

where µrightn,k are the modified moments of the right edge functions:

µrightn,k =

∫ 0

−2N+1
(x+N)kφrightn (x) dx (−N ≤ n < −1). (24)

Proceeding as in the left-end case, we find

21/2µrightn,k =
−1
∑

l=−N

Hright
n,l

2k
µrightl,k +

k
∑

j=0

2−j

(

k
j

)

mright
n,k−jµj ,
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where

M right
n,j = 2−j

−1
∑

l=−N

H left
n,l µ

right
l,j , mright

n,k =

−N−1
∑

l=2n+1−N

(

l

2
+N

)k

Hright
n,l .

We have, for each k ≥ 0, the linear system

21/2µrightn,k −
−1
∑

l=−N

Hright
n,l

2k
µrightl,k =

k−1
∑

j=0

(

k
j

)(

N

2

)k−j

M right
n,j

+
k
∑

j=0

2−j

(

k
j

)

mright
n,k−jµj (−N ≤ n ≤ −1).

Now we have µrightn,k , we find µcn,k from (21) and apply again the modified
Chebyshev algorithm to recover the quadrature points and weights for φcn(x).
Since the modified moments are defined with respect to pk(x) = (x+N)k, the
parameters ak and bk from the recursion (23) are given as ak = −N and bk = 0,
k ≥ 0.

4. Application to a Fredholm Integral Equation

Let K ∈ L2([0, 1] × [0, 1]) be a symmetric and nonnegative-definite covariance
kernel. We have ([9]) that K admits the spectral decomposition

K(x, y) =
∞
∑

k=1

λkuk(x)uk(y),

where the nonnegative eigenvalues λk and the orthonormal eigenfunctions uk
(k ≥ 1) are the solutions of the homogeneous Fredholm integral equation

∫ 1

0
K(x, y)uk(y) dy = λkuk(x), x ∈ [0, 1]. (25)

Let B = {v1, . . . , vm} ⊂ L2([0, 1]) be a set of linearly independent functions
and V = span(B). The Galerkin approximation to (25) in V consists of finding
λhk ∈ R and uhk(x) ∈ Vh (1 ≤ k ≤ m) such that

a(uhk , vh) = λhk 〈uhk , vh〉 ∀ vh ∈ V. (26)

a(u, v) =

∫ 1

0

∫ 1

0
K(x, y)u(y)v(x) dy dx, 〈u, v〉 =

∫ 1

0
u(x)v(x) dx. (27)
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In matrix form, we have the generalized eigenvalue problemKuk = λhkWuk,
where the unknown vector uk are the coordinates of the k-th approximate eigen-
vector in the basis B, and the matrices K and W are defined by the coefficients
Ki,j = a(vj , vi) and Wi,j = 〈vj , vi〉, 1 ≤ i, j ≤ m.

If the basis B is orthonormal (such as the basis (17)), then the problem
reduces to the standard eigenvalue problem, i.e.,

Kuk = λhkuk, Ki,j = a(vj , vi), 1 ≤ i, j ≤ m. (28)

We consider V = VJ , m = 2J , and vi = θJ,i−1 (1 ≤ i ≤ m), with
θJ,0, . . . θJ,2J−1 defined in (17). Moreover, we approximateKi,j with the product
quadrature

Ki,j =

∫

supp(θJ,j)

(

∫

supp(θJ,i)
K(x, y)θJ,i(y) dy

)

θJ,j(x) dx

≈
r
∑

l=1

K̃(j)(xcl,i)w
c
l,i − ci

r
∑

l=1

K̃(j)(xχl,i)w
χ
l,i, (29)

where K̃(j)(x) is the quadrature for the inner integral given as

K̃(j)(x) =

r
∑

l=1

K(x, xcl,j)w
c
l,j − cj

r
∑

l=1

K(x, xχl,j)w
χ
l,j, (30)

in analogy with the Gaussian quadratures for (18) presented in Sec. 3. The
quadrature points and weights in (29)-(30) are written as follows: if 0 ≤ i ≤
N − 1, then

xcl,i = 2−Jxc,leftl,n , wc
l,i = 2−J/2wc,left

l,n ,

xχl,i = 2−Jxχ,leftl , 2−Jwχ
l,i = xχ,leftl , ci = clefti ;

if N ≤ i ≤ 2J −N − 1, then

xcl,i = 2−J(xc,intl + i), wc
l,i = 2−J/2wc,int

l ,

xχl,i = 2−J(xχ,intl + i), 2−Jwχ
l,i = xχ,intl , ci = cint;

and if i = 2J − n, 1 ≤ n ≤ N , then

xcl,i = 2−J(xc,rightl,n + 1), wc
l,i = 2−J/2wc,right

l,n ,

xχl,i = 2−J(xχ,rightl + 1), 2−J/2wχ
l,i = xχ,rightl , ci = crightn .
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For comparison purposes, we also consider the basis {φHaar
J,n (x)}2J−1

n=0 gen-

erated by the Haar scaling function φHaar(x) = χ[0,1)(x). As usual (see, e.g.,
[14]), the entries of Ki,j in (28) are computed with the midpoint rule

Ki,j ≈ 2−JK(xJ,j, xJ,i), xJ,i =
2i+ 1

2(2−J )
. (31)

4.1. Numerical Examples

In our experiments, we considered the Gaussian covariance kernel with variance
σ2 and correlation parameter η:

K(x, y) = σ2 exp(−|x− y|2/η2). (32)

The reference solution was computed using the spectral element method [12]
of degree 16 on a spatial mesh of 212 + 1 nodes. In our simulations we employ
different correlation lengths (η = 0.1 and 0.01) to quantify the influence of the
scale of correlation on the quality of simulation. For a coherent comparison of
the two covariance models, the degree of variability is kept in σ2 = 1.

Let us first compare the computational costs of building the matrix K in
the eigenvalue system (28) with the CDV and Haar bases. Figure 2 shows the
ratio between CPU times of CDV and Haar as a function of the number of
integration points r. We consider the correlation length η = 0.1. Note that the
relative cost in terms of CPU time is O(r2), which is expected from the fact
that the Galerkin method with Haar basis functions needs one kernel evaluation
to compute each entry of the eigenvalue system (see (31)), whereas the CDV
bases require (2r)2 kernel evaluations in (29)-(30).

We denote as eJ,N the relative error of approximation of the 10-th eigenvalue
λ10 of (25) by the Galerkin method with the basis V = VJ with N vanishing
moments, i.e.,

eJ,N =
‖λ10 − λJ,N10 ‖

‖λ10‖
.

Figure 3 illustrates how the eigenvalue error eJ,N depends on the scaling
parameter J , the number of vanishing moments N , the correlation length η, and
the number of integration points r. Note that the convergence rate increases
with N , in particular the performance of CDV basis is better than that of
the Haar basis. Furthermore we needed more integration points in the case
η = 0.01. Although the covariance function is smooth, it rapidly decreases to
zero as |x− y| increases, demanding a higher resolution in the computation of
the double integral (27) near the diagonal x = y.
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Figure 2: Ratio of CPU times of CDV and Haar considering η = 0.1
and N = 3.

Fig. 4 shows the approximation of the tenth eigenfunction considering the
Haar and CDV bases in contrast to the reference solution (GLL). In this ex-
periment we consider correlation lengths η = 0.1, r = 7 integration points, and
the scaling parameter J = 6. In this case, all approximations are satisfactory
(even the Haar approximation, which accurately approximates the reference
eigenfunction at the element midpoints). The smoothness of the approxima-
tion increases with N . On the other hand, we note that the improvement is
not significant from N = 3 to N = 4, indicating the fast convergence of the
Galerkin method with the CDV basis. Similar qualitative results (not shown
herein) were observed with η = 0.01.

5. Conclusions

In this work, we proposed quadrature rules for integrals involving the Cohen-
Daubechies-Vial scaling functions and employed them to design a high-order
Galerkin method for the homogeneous Fredholm integral equation of the second
kind. The use of the modified Chebyshev algorithm rendered these quadratures
more robust than the ones proposed in [10] for the standard Daubechies’ family
of scaling functions as noted in Fig. 1. We can note from Fig. 3(c)-(d) that an
accurate computation of the wavelet coefficients may be crucial on Fredholm
integral equations if the kernel exhibits a strong decay. We note that, by a
tensor product of the basis functions in (17) and the quadratures (29)-(30),
Galerkin method (26) can be extended to the two-dimensional case [13]. The
methodology employed herein may be applied to the wavelet functions of the
CDV family as well as other orthogonal families.
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Figure 3: Relative eigenvalue errors for Gaussian kernel (32) when
η = 0.1 and 0.01.

A. Recursive Evaluation of the Scaling Functions

This appendix regards the recursive evaluation of the left and right edge func-
tions present in the Cohen-Daubechies-Vial basis. For conciseness, let us focus
on the left edge functions φleftn . The starting point is to evaluate φleftn (k) for
the integers 0 ≤ k ≤ 2N − 1.

Let 0 ≤ n ≤ N − 1 be fixed. If N ≤ k ≤ 2N − 1, then 2k > 2N − 1 and
thus φleftn (2k) = 0. It follows from (15) that, for N ≤ k ≤ 2N − 1,

φleftn (k) =
√
2

N+2n
∑

l=N

H left
n,l φ(2k − l).
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Figure 4: Tenth reference (Ref.) eigenfunction of Gaussian kernel
(32) and its Galerkin approximation (Haar and CDV with N =
2, . . . , 4) when η = 0.1.
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For 1 ≤ k ≤ N − 1, we compute φleftn (k) backwards:

2−1/2φleftn (N − 1) =

N−1
∑

l=0

H left
n,l φ

left
l (2N − 2) +

N+2n
∑

l=N

H left
n,l φ(2N − 2− l),

2−1/2φleftn (N − 2) =
N−1
∑

l=0

H left
n,l φ

left
l (2N − 4) +

N+2n
∑

l=N

H left
n,l φ(2N − 4− l),

...

2−1/2φleftn (1) =

N−1
∑

l=0

H left
n,l φ

left
l (2) +

N+2n
∑

l=N

H left
n,l φ(2− l).

It remains to compute φleftn (0). Taking x = 0 into (15), we find

2−1/2φleftn (0) −
N−1
∑

l=0

H left
n,l φ

left
l (0) =

N+2n
∑

l=N

H left
n,l φ(−l), 0 ≤ n ≤ N − 1.

Since supp(φ) = [−N + 1, N ], we have φ(−l) = 0 for any l ≥ N and the
equation above reduces to

N−1
∑

l=0

H left
n,l φ

left
l (0) = 2−1/2φleftn (0), 0 ≤ n ≤ N − 1. (33)

Let us recall from [2] that the space VJ spanned by (17) is constructed in
order to generate all polynomials of degree ≤ N − 1. In particular, we have for
the constant function p(x) = 1 that

1 =

2j−1
∑

n=0

〈1, θj,n〉θj,n(x), 〈1, φ〉 =
∫

supp(φ)
φ(x) dx. (34)

For x = 0, the interior and right edge functions vanish, thus

N−1
∑

n=0

2j
(∫ 2N−1

0
φleftn (2jt) dt

)

φleftn (0) =

N−1
∑

n=0

µleftn,0 φ
left
n (0) = 1, (35)

where the moments µleftn,0 have been found in Sec. 3. It follows from (35) that

there exists a non-trivial solution v = [φleft0 (0), . . . , φleftN−1(0)]
T to (33), which is



776 J.S. Azevedo, S.P. Oliveira, F. Wisniewski

an eigenvector corresponding to λ = 2−1/2 of the eigenvalue problem

Av = λv, A =













H left
0,0 H left

0,1 . . . H left
0,N−1

H left
1,0 H left

1,1 . . . H left
1,N−1

...
...

. . .
...

H left
N−1,0 H left

N−1,1 . . . H left
N−1,N−1













. (36)

Once we find an eigenvector w of (36) corresponding to λ = 2−1/2, we
retrieve v by a scaling of w in order that (35) holds:

v = αw, α =

(

N−1
∑

n=0

µleftn,0 wn

)−1

.

Now we have φleftn (k) for the integers 0 ≤ k ≤ 2N − 1, we employ (15) to

compute φleftn ((2k − 1)/2) for any 1 ≤ k ≤ 2N − 1, and iteratively repeat this

process until we find φleftn (xk), xk = 2−M (2N −1)k, for any 0 ≤ k ≤ 2M , where
M is the desired resolution level.
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