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1. Introduction

Malaria is one of the infectious diseases that have continued to be a subject of
major concern to the public health. This is why 25th of April is set aside as
the world’s annual malaria day for a global alertness against the disease. The
world malaria report [17] shows that, in 2013, an estimated 3.3 billion people
worldwide were at risk of acquiring malaria with populations living in sub-
Saharan Africa having the highest risk. Approximately 80% of malaria cases
and 90% of deaths are estimated to occur in most countries of this sub-Saharan
Africa (see, [16]).

The disease is caused by parasite of genus Plasmodium and is transmit-
ted to human through the bites of an infectious female anopheles mosquito.
The presence of the infection in human is characterized by paroxysms of chills,
fever, headache, pain and vomiting; if left untreated, the infection can be life-
threatening [10, 13].

The use of mathematics to explain the transmission and spread of malaria in
a two-interacting populations has been extensively studied by researchers over
the years. Notable among these studies are [1, 3, 6, 7, 9, 10]. Since humans
may not have equal likelihood of getting infected, it is reasonable to incorporate
age-structure in designing malaria model (see, for instance, [7] where human
compartment is divided into two age groups, namely juveniles and adults).
Further, in the absence of an effective malaria vaccination, intervention strate-
gies known as vector control measures become inevitable in order to ensure
malaria-free population. These measures include the use of; insecticide-treated
bed-nets (ITNs), indoor residual spraying (IRS) and mosquito-repellent lotions
to prevent human-mosquito contacts as well as prophylaxis (the use of drug to
prevent malaria) and integrated vector management as prescribed by the World
Health Organisation (see, [15-17]).

In this study, we design and analyse a mathematical compartmental model
that considers a discrete-age-structure without dividing human compartment
into age groups and incorporates a new class of human (vigilant human com-
partment) that adheres to the vector control measures. The rest of this study
is organized as follows. Section 2 deals with the formulation of the model and
shows its basic qualitative properties. In Section 3, asymptotic stability cum
sensitivity analyses are performed. Finally, concluding remarks are provided in
Section 4.
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2. Model Formulation

The formulation of malaria model requires the interaction between the discrete-
age-structured humans and adult female anopheles mosquitoes populations.
The total human population size at continuous-time t and discrete-age ai, de-
noted by Nh(t, ai), where i = 0, 1, 2, ..., L and aL is the maximum age of humans
in the population, is subdivided into four compartments namely susceptible
humans Sh(t, ai) (those who are not currently harbouring the disease but are
liable to be infected), exposed humans Eh(t, ai) (those who are infected with
the malaria parasites but are incapable of transmitting the disease), infectious
humans Ih(t, ai) (those already infected and are able to transmit the disease),
and vigilant humans Vh(t, ai) (those who are wary of malaria and guide against
it by adhering to the vector control measures). Hence, we have

Nh(t, ai) = Sh(t, ai) + Eh(t, ai) + Ih(t, ai) + Vh(t, ai).

The total mosquito population at time t, denoted by Nm(t), is subdivided
into susceptible mosquitoes Sm(t), exposed mosquitoes Em(t) and infectious
mosquitoes Im(t), so that

Nm(t) = Sm(t) + Em(t) + Im(t).

The dynamics of the model is formulated under the following assumptions:

• That only humans are vigilant

• That humans are recruited into either susceptible or vigilant compartment

• That exposed humans progress to either become infectious or vigilant if
they are quickly treated (i.e. if under prophylaxis)

• That all infectious humans that recover become vigilant only

• That adherence to vector control measures by the vigilant humans is strict
and does not result into re-infection

• That mosquitoes are recruited through susceptible class only

• That the infected susceptible mosquitoes are the exposed mosquitoes who
are not yet infectious.

• That the exposed mosquitoes progress to become infectious only

• That the infectious mosquitoes remain infectious until death.



130 O.S. Obabiyi, S. Olaniyi

Therefore, we describe the transmission dynamics of malaria by the follow-
ing system of ordinary differential equations:

Ṡh(t, ai) =

L
∑

i=0

(1− τ)λh(ai)Nh(t, ai)−
bβh(ai)Sh(t, ai)Im(t)

Nh(t, ai)

− µh(ai)Sh(t, ai) (2.1a)

Ėh(t, ai) =

L
∑

i=0

bβh(ai)Sh(t, ai)Im(t)

Nh(t, ai)
− (αh(ai) + µh(ai))Eh(t, ai) (2.1b)

İh(t, ai) =
L
∑

i=0

(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai))Ih(t, ai) (2.1c)

V̇h(t, ai) =
L
∑

i=0

τλh(ai)Nh(t, ai) + θαh(ai)Eh(t, ai)

+γ(ai)Ih(t, ai)− µh(ai)Vh(t, ai)

(2.1d)

Ṡm = λmNm −
bβmSm(t)Ih(t, ai)

Nh(t, ai)
− µmSm(t) (2.1e)

Ėm =
bβmSm(t)Ih(t, ai)

Nh(t, ai)
− (αm + µm)Em(t) (2.1f)

İm = αmEm(t)− µmIm(t), (2.1g)

where a dot represents the differentiation with respect to time. The accompa-
nying initial conditions of system (2.1) are given by:







Sh(0, ai) = S0h(ai), Eh(0, ai) = E0h(ai), Ih(0, ai) = I0h(ai),

Vh(0, ai) = V0h(ai), Sm(0) = S0m, Em(0) = E0m, Im(0) = I0m.

(2.2)

The parameters of the model (2.1) are described as follows:
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Parameter Description
λh(ai) Per capita recruitment rate of humans at discrete-age (ai)
τ Proportion of human population that is born vigilant
λm Per capita recruitment rate of mosquitoes
b Biting rate of the mosquito
βh(ai) Probability that a bite by an infectious mosquito results

into infection in human
βm Probability that a bite results in transmission

of parasite to a susceptible mosquito
µh(ai) Per capita death rate of human at discrete-age (ai)
µm Per capita death rate of mosquito
αh(ai) Per capita rate of progression of exposed humans

to infectious humans at discrete-age (ai)
θ Proportion of exposed humans that becomes vigilant
αm Per capita rate of progression of mosquitoes

from the exposed state to the infectious state
γ(ai) Per capita recovery rate of infectious humans

to vigilant humans at discrete-age (ai)

Table 1: Description of the model parameters.

To conveniently carry out the analysis of the formulated model (2.1), we
rescale the state variables by dividing the number of the individuals in the sub-
populations by their respective total number of populations. This process is
achieved by making the following change of variables:

S̄h(t, ai) =
Sh(t, ai)

Nh(t, ai)
, Ēh(t, ai) =

Eh(t, ai)

Nh(t, ai)
, Īh(t, ai) =

Ih(t, ai)

Nh(t, ai)
,

V̄h(t, ai) =
Vh(t, ai)

Nh(t, ai)
, S̄m(t) =

Sm(t)

Nm(t)
, Ēm(t) =

Em(t)

Nm(t)
, Īm(t) =

Im(t)

Nm(t)
.

So that,
S̄h(t, ai) + Ēh(t, ai) + Īh(t, ai) + V̄h(t, ai) = 1 and S̄m(t) + Ēm(t) + Īm(t) = 1.
Noting that this rescaling follows from the assumption that λh(ai) = µh(ai)
and λm = µm. Thus, after dropping of bars, (̄ ), and if we let σ = Nm

Nh
, model
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(2.1) leads to the following system of equations:







































































































dSh(t,ai)
dt

= (1− τ)λh(ai)−

L
∑

i=0

bβh(ai)σSh(t, ai)Im − µh(ai)Sh(t, ai)

dEh(t,ai)
dt

=

L
∑

i=0

bβh(ai)σSh(t, ai)Im − (αh(ai) + µh(ai))Eh(t, ai)

dIh(t,ai)
dt

=
L
∑

i=0

(1− θ)αh(ai)Eh(t, ai)− (γ(ai) + µh(ai)Ih(t, ai)

dVh(t,ai)
dt

= τλh(ai) + θαh(ai)Eh(t, ai) + γ(ai)Ih(t, ai)− µh(ai)Vh(t, ai)

dSm

dt
= λm − bβmSm(t)Ih(t, ai)− µmSm(t)

dEm

dt
= bβmSm(t)Ih(t, ai)− (αm + µm)Em(t)

dIm
dt

= αmEm(t)− µmIm(t)
(2.3)

2.1. Basic Qualitative Properties

Since model (2.3) represents interaction between human and mosquito popula-
tions, it makes sense to state that all the parameters involved are non-negative.
It is also pertinent to show that all the state variables of the model are non-
negative for all times.

To begin with, summing up the first four and the last three of the malaria
model (2.3), we have

dNh

dt
= µh(ai) (1−Nh)

and
dNm

dt
= µm (1−Nm) ,

so that,
Nh = 1 + (Nh(0) − 1) exp(−µh(ai)t) and Nm = 1 + (Nm(0) − 1) exp(−µmt)
respectively. So the malaria model (2.3) will be analysed in a positively invariant
region D = Dh ×Dm ⊂ R

4
+ × R

3
+ with

Dh =
{

(Sh(t, ai), Eh(t, ai), Ih(t, ai), Vh(t, ai)) ∈ R
4
+ : Sh + Eh + Ih + Vh = 1

}

and
Dm =

{

(Sm, Em, Im) ∈ R
3
+ : Sm + Em + Im = 1

}

.



ASYMPTOTIC STABILITY OF MALARIA DYNAMICS... 133

2.1.1. Positivity of Solutions

Here, we show that the state variables of the model (2.3) are positive for all
times.

Theorem 2.1. The solutions, Sh(t, ai), Eh(t, ai), Ih(t, ai), Vh(t, ai), Sm(t),
Em(t), Im(t), of the malaria model (2.3) with non-negative initial data (2.2) in
D remain non-negative for all times t > 0.

Proof. Consider the first equation of system (2.3) for a given non-negative
initial condition S0h(ai) in D and suppose that there exist β > 0 and µ > 0
such that βh(ai) < β and µh(ai) < µ, then

dSh(t, ai)

dt
= (1− τ)λh(ai)−

L
∑

i=0

[bβh(ai)σSh(t, ai)Im − µh(ai)Sh(t, ai)]

≥ − (bβσIm + µ)

L
∑

i=0

Sh(t, ai),

so that,

d

dt

L
∑

i=0

Sh(t, ai) ≥ −(L+ 1) (bβσIm + µ)
L
∑

i=0

Sh(t, ai)

which on integration becomes

L
∑

i=0

Sh(t, ai) ≥

L
∑

i=0

S0h(ai) exp

[

−(L+ 1)

(
∫ t

0
bβσIh(ζ)dζ + µt

)]

> 0, ∀ t > 0.

Hence, it is necessary and sufficient that Sh(t, ai) ≥ 0,∀ ai and t > 0. By
similar argument, it can be shown that Eh(t, ai) ≥ 0, Ih(t, ai) ≥ 0, Vh(t, ai) ≥
0, Sm(t) ≥ 0, Em(t) ≥ 0 and Im(t) ≥ 0 for all times t > 0. This completes the
proof.

3. Asymptotic Stability and Sensitivity Analysis

At this juncture, we analyse the behaviour of the dynamics governed by model
(2.3) as its solutions approach the disease-free and endemic equilibria. The con-
tributory effects of the model parameters with respect to the basic reproduction
number of the model is also performed through sensitivity analysis.
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3.1. Disease-Free Equilibrium

The steady-state solution of model (2.3) when the diseased classes; Eh(t, ai) =
Ih(t, ai) = 0 and Em(t) = Im(t) = 0 is referred to as the disease-free equilibrium
point denoted by E0. This is obtained as

E0 = ((1− τ), 0, 0, τ, 1, 0, 0) . (3.1)

To examine the local stability of E0 given by (3.1), it is important to first obtain
the basic reproduction number, R0, defined as the average number of secondary
infections caused by a typical infectious individual in a completely susceptible
population. The next generation matrix method of computing R0 described
by van den Driessche and Watmough [14] is explored on the model (2.3) as
follows:
Let x = (Eh(t, ai), Ih(t, ai), Em(t), Im(t), Sh(t, ai), Vh(t, ai), Sm(t), )T , so that

model (2.3) can be written as
dx

dt
= F(x) − V(x). Considering only the dis-

eased compartments, the rate of appearance of new infections and transition
rate are given, respectively, by

Fi =















L
∑

i=0

bβh(ai)σSh(t, ai)Im(t)

0
bβmSmIh(t, ai)

0















and

Vi =





















L
∑

i=0

(αh(ai) + µh(ai))Eh(t, ai)

L
∑

i=0

(γ(ai) + µh(ai))Ih(t, ai)− (1− θ)αh(ai)Eh(t, ai)

(αm + µm)Em

µmIm − αmEm





















.



ASYMPTOTIC STABILITY OF MALARIA DYNAMICS... 135

Then the non-negative matrix F of the new infection terms and non-singular
matrix V of transition terms are, respectively, obtained as

F =















0 0 0
L
∑

i=0

bβh(ai)σ(1− τ)

0 0 0 0
0 bβm 0 0
0 0 0 0















and

V =





















L
∑

i=0

(αh(ai) + µh(ai)) 0 0 0

−

L
∑

i=0

(1− θ)αh(ai)
L
∑

i=0

(γ(ai) + µh(ai)) 0 0

0 0 (αm + µm) 0
0 0 −αm µm





















.

Consequently, we obtain the spectral radius of the matrix FV−1, known as the
the basic reproduction number of the malaria model (2.3) as

R0(ai) =

√

√

√

√

L
∑

i=0

b2βh(ai)σαh(ai)βmαm(1− θ)(1− τ)

(αh(ai) + µh(ai))(γ(ai) + µh(ai))(αm + µm)µm
. (3.2)

We next state and prove the local stability of E0 with respect to (3.2).

Theorem 3.1. The disease-free equilibrium, E0, of the system (2.3) is

locally asymptotically stable if R0(ai) < 1 and unstable if R0(ai) > 1.

Proof. The Jacobian of the malaria model (2.3) evaluated at the disease-free
equilibrium point, E0, is obtained as

J(E0) =





















J11 0 0 0 0 0 J17
0 J22 0 0 0 0 J27
0 J32 J33 0 0 0 0
0 J42 J43 J44 0 0 0
0 0 J53 0 J55 0 0
0 0 J63 0 0 J66 0
0 0 0 0 0 J76 J77





















, (3.3)
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where

J11 = −µh(ai), J17 = −bβh(ai)σ(1− τ), J22 = −(αh(ai) + µh(ai)),

J27 = bβh(ai)σ(1− τ), J32 = (1− θ)αh(ai), J33 = −(γ(ai) + µh(ai)),

J42 = θαh(ai), J43 = γ(ai), J44 = −µh(ai),

J53 = −bβm, J55 = −µm, J63 = bβm,

J66 = −(αm + µm), J76 = αm, J77 = −µm.

A necessary and sufficient condition for local asymptotic stability is for the real
part of the eigenvalue to be in the negative half plane [2]. Thus, we need to
show that J(E0) given by (3.3) has all its eigenvalues with negative real part.
To this purpose, it is obvious from (3.3) that −µh(ai) (twice) and −µm are
the three of the seven eigenvalues of J(E0) since the first, fourth and the fifth
columns contain only the diagonal terms. Hence, the other four eigenvalues can
be obtained from the sub-matrix, J∗(E0), given by

J∗(E0) =





















J∗
11 0 0 J∗

14

J∗
21 J∗

22 0 0

0 J∗
32 J∗

33 0

0 0 J∗
43 J∗

44





















.

where J∗
11 = J33, J∗

14 = J27, J∗
21 = J32, J∗

22 = J33, J∗
32 = J63, J∗

33 = J66,
J∗
43 = J76 and J∗

44 = J77. In what follows, the characteristic equation of J∗(E0)
is of the form

(λ+Q1)(λ+Q2)(λ+Q3)(λ+Q4)−Q5 = 0, (3.4)

where Q1 = αh(ai)+µh(ai), Q2 = γ(ai)+µh(ai), Q3 = αm+µm, Q4 = µm and

Q5 =

L
∑

i=0

b2βh(ai)σαh(ai)(1− θ)(1− τ)βmαm. Further expansion of (3.4) gives

C4λ
4 + C3λ

3 + C2λ
2 + C1λ+ C0 = 0, (3.5)
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where






















C4 = 1
C3 = Q1 +Q2 +Q3 +Q4

C2 = (Q1 +Q2)(Q3 +Q4) +Q1Q2 +Q3Q4

C1 = (Q1 +Q2)Q3Q4 + (Q3 +Q4)Q1Q2

C0 = Q1Q2Q3Q4 −Q5.

(3.6)

It is easy to see that C0 can be written in terms of R0(ai) as

C0 = Q1Q2Q3Q4(1−R2
0). (3.7)

If in (3.7) R0(ai) < 1, then C0 > 0. Since the coefficients Ci, i = 1, 2, 3, 4 and
the Hurwitz matrices of the polynomial (3.5) are positive, using Routh-Hurwitz
criterion (see,[8]), all the eigenvalues of (3.5) have negative real parts. There-
fore, the disease-free equilibrium, E0, is stable. Otherwise, whenever R0(ai) > 1
then C0 < 0. By Descartes’ rule of signs [12], there exists one eigenvalue with
positive real part. Hence, E0 is unstable for R0(ai) > 1.

The epidemiological implication of the above result is that the malaria dis-
ease governed by model (3) can be eliminated from the population whenever
an influx by infectious individuals is small such that R0(ai) < 1.

3.2. Endemic Equilibrium

The steady-state solution of model (2.3) when all the state variables are positive
is referred to as the endemic equilibrium point denoted and given by

Ee = (S∗
h(ai), E

∗
h(ai), I

∗
h(ai), V

∗
h (ai), S

∗
m, E∗

m, I∗m) . (3.8)

It is burdensome to obtain the explicit form of the endemic equilibrium point
of the model (2.3). However, the existence and local stability of Ee shall be
explored using a center manifold theory of bifurcation analysis described in
Castillo-Chavez and Song [4]. To this purpose, let the malaria model (2.3) be
written in the vector form

dX

dt
= F (X),

where
X = (x1, x2, x3, x4, x5, x6, x7)

T and F = (f1, f2, f3, f4, f5, f6, f7)
T with

Sh(t, ai) = x1, Eh(t, ai) = x2, Ih(t, ai) = x3, Vh(t, ai) = x4, Sm(t) = x5,
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Em(t) = x6, and Im(t) = x7. Then model (2.3) becomes



























































































dx1

dt
= (1− τ)λh(ai)− bβh(ai)σx1x7 − µh(ai)x1 := f1

dx2

dt
= bβh(ai)σx1x7 − (αh(ai) + µh(ai))x2 := f2

dx3

dt
= (1− θ)αh(ai)x2 − (γ(ai) + µh(ai))x3 := f3

dx4

dt
= τλh(ai) + θαh(ai)x2 + γ(ai)x3 − µh(ai)x4 := f4

dx5

dt
= λm − bβmx5x3 − µmx5 := f5

dx6

dt
= bβmx5x3 − (αm + µm)x6 := f6

dx7

dt
= αmx6 − µmx7 := f7

(3.9)

At R0(ai) = 1 in (3.2), the bifurcation parameter βh(ai) can be obtained as

β∗
h(ai) =

L
∑

i=0

(αh(ai) + µh(ai))(γ(ai) + µh(ai))(αm + µm)µm

b2σαh(ai)βmαm(1− θ)(1− τ)
. (3.10)

The linearized matrix of the system (3.9) around the disease-free equilibrium
E0 and evaluated at β∗

h(ai) is given by

J(E0, β
∗
h(ai)) =





















−µh 0 0 0 0 0 −A1

0 −A2 0 0 0 0 A1

0 A3 −A4 0 0 0 0
0 A5 γ −µh(ai) 0 0 0
0 0 −bβm 0 −µm 0 0
0 0 bβm 0 0 −A6 0
0 0 0 0 0 αm −µm





















,

(3.11)
where A1 = bβ∗

h(ai)σ(1 − τ), A2 = (αh(ai) + µh(ai)), A3 = (1 − θ)αh(ai),
A4 = (γ(ai) + µh(ai)), A5 = θαh(ai) and A6 = (αm + µm). The eigenvalues of
J(E0, β

∗
h(ai)) are the roots of the characteristic equation given by

(λ+ µh(ai))
2(λ+ µm)M(λ) = 0 = 0, (3.12)

where M(λ) is a polynomial of degree four whose roots are all negative except
one zero eigenvalue. The left eigenvector, v = (v1, v2, ..., v7), corresponding to
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the simple zero eigenvalue of (3.11) is obtained from vJ(E0, β
∗
h(ai)) = 0 as















































v1 = 0, v2 =
bβmαmαh(ai)(1− θ)

(αh(ai) + µh(ai))
,

v3 = bβmαm, v4 = 0, v5 = 0,

v6 = αm(γ(ai) + µh(ai))

v7 = (γ(ai) + µh(ai))(αm + µm)

(3.13)

Further, the right eigenvector, w = (w1, w2, ..., w7)
T , associated with this simple

zero eigenvalue can be obtained from J(E0, β
∗
h(ai))w = 0. As a result, we have















































































































































w1 = −

L
∑

i=0

(αh(ai) + µh(ai))(γ(ai) + µh(ai))(αm + µm)µmw7

bβmαm(1− θ)αh(ai)µh(ai)

w2 =
(γ(ai) + µh(ai))(αm + µm)µmw7

bβmαm(1− θ)αh(ai)

w3 =
(αm + µm)µmw7

bβmαm

w4 =
(αm + µm)(θµh(ai) + γ(ai))µmw7

bβmαm(1− θ)µh(ai)

w5 = −
(αm + µm)µmw7

αm

w6 =
µmw7

αm

w7 =
αh(ai) + µh(ai)

B

, (3.14)

where

B =
L
∑

i=0

µm(γ(ai) + µh(ai))(αh(ai) + µh(ai) + αm + µm)

+(αh(ai) + µh(ai))(αm + µm)(µm + γ(ai) + µh(ai)).

It should be noted that the components ofw and v are obtained so that v.w = 1
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as required in [4]. All the second-order partial derivatives of fi, i = 1, 2..., 7,
from the system (3.9) are zero at point (E0, β

∗
h(ai)) except the following

∂2f1

∂x1∂x7
=

∂2f1

∂x7∂x1
= −bβ∗

h(ai)σ,
∂2f2

∂x1∂x7
=

∂2f2

∂x7∂x1
= bβ∗

h(ai)σ,

∂2f5

∂x3∂x5
=

∂2f5

∂x5∂x3
= −bβm,

∂2f6

∂x3∂x5
=

∂2f6

∂x5∂x3
= bβm

with
∂2f1

∂x7∂βh(ai)
= −bσ(1− τ),

∂2f2

∂x7∂βh(ai)
= bσ(1− τ).

The direction of the bifurcation at R0(ai) = 1 is determined by the signs of the
bifurcation coefficients a and b, obtained from the above partial derivatives,
given, respectively, by

a =
7

∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(E02, β

∗
h)

= −
2µmw2

7(γ(ai) + µh(ai))(αm + µm)2

αm

×

[

L
∑

i=0

(γ(ai) + µh(ai))(αh(ai) + µh(ai))µm

bµh(ai)αh(ai)βm(1− θ)(1− τ)
+ 1

]

(3.15)

and

b =

7
∑

k,i=1

vkwi
∂2fk

∂xi∂βh(ai)
(E02, β

∗
h(ai))

=
b2σβmαmαh(ai)(1− θ)(1− τ)w7

(αh(ai) + µh(ai))
.

(3.16)

Since a < 0 and b > 0, it follows from Theorem 4.1(iv) (see, [4]) that the
malaria model (2.3) exhibits a supercritical (forward) bifurcation and the en-
demic equilibrium Ee is locally asymptotically stable. This result is theorized
hereunder:

Theorem 3.2. The malaria model governed by (2.3) exhibits a forward

bifurcation at the threshold R0(ai) = 1 (or, equivalently, there exists an endemic

equilibrium, Ee, which is locally asymptotically stable whenever R0(ai) > 1 but

near R0(ai) = 1).
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The implication of the above result is that a small inflow of infectious in-
dividuals into a completely susceptible population will lead to the persistence
of the disease in the community whenever R0(ai) > 1. It should be noted that
the summation over all the discrete ages will result to a net basic reproduction

number about the maximum age a; that is, R0(a) =

L
∑

i=0

R0(ai) > 1.

3.3. Sensitivity Analysis

Following the idea in [5, 11], we perform a sensitivity analysis of the model
(2.3) in order to determine the contributory effects of the model parameters on
the transmission and spread of the malaria disease.

Definition 3.1. The normalized forward-sensitivity index of a variable, v,
that depends differentiably on a parameter, p, is defined as:

Υv
p =

∂v

∂p
×

p

v
. (3.17)

In particular, sensitivity indices of the basic reproduction number, R0(ai), with
respect to the model parameters are computed. For example, using (3.17), we
have

Υ
R0(ai)
b =

∂R0(ai)

∂b
×

b

R0(ai)
= 1,

Υ
R0(ai)
τ =

∂R0(ai)

∂τ
×

τ

R0(ai)
= −

1

2

(

τ

1− τ

)

,

Υ
R0(ai)
µm

=
∂R0(ai)

∂µm
×

µm

R0(ai)
= −

1

2

(

αm + 2µm

αm + µm

)

,

Υ
R0(ai)
θ =

∂R0(ai)

∂θ
×

θ

R0(ai)
= −

1

2

(

θ

1− θ

)

.

(3.18)

The sensitivity index (S.I) of R0(ai) with respect to other parameters of the
model can be computed in the same fashion as (3.18) above. We summarize
the overall sensitivity analysis of the model by showing the signs of (S.I) in the
table hereunder.
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Parameter S.I Parameter S.I

b +ve θ −ve
βh(ai) +ve τ −ve
αh(ai) +ve µh(ai) −ve
βm +ve µm −ve
αm +ve γ(ai) −ve

Table 2: The sensitivity indices of R0(ai).

The sign of the sensitivity index (S.I) plays a key role in determining how
the parameters of the model relate to the basic reproduction number, R0(ai),
of the model. In Table 2, the positive sign of (S.I) shows a direct relation of
R0(ai) to the parameters in this category while the negative sensitivity index
shows an inverse relation of R0(ai) to the parameters. With sensitivity analysis,
one can get insight on the appropriate intervention strategies to prevent and
control the transmission and spread of the malaria in the community. For

example, Υ
R0(ai)
b = 1 means that increasing (or decreasing) b by 10% increases

(or decreases) R0(ai) by the same measure. This suggests that an increase (or
decrease) in the exposure to the mosquito bites will lead to the persistence (or
reduction) of the disease in the population. Further, if more than half of the

human population are born vigilant, say, τ = 0.8, then we have Υ
R0(ai)
τ = −2.0.

This implies that increasing (or decreasing) τ by 10% decreases (or increases)
R0(ai) by 20%. The same is true for the parameter θ. Hence the need for
humans to be more vigilant by strictly adhering to the malaria vector control
measures of the World Health Organization (WHO).

4. Conclusion

A mathematical compartmental model for the malaria transmission in a two-
interacting population of human and mosquito has been studied. The formu-
lated model with discrete-age-structured human population incorporates a class
of vigilant human who adheres to the vector control measures. Asymptotic be-
haviour of the model around the equilibria is examined and the contributory
effects of the model parameters are determined in relation to the basic repro-
duction number, R0(ai). The disease-free equilibrium is shown to be locally
asymptotically stable when R0(ai) < 1. Here, it is important to raise an ob-
jection that the disease-free state may not always be stable since the net basic
reproduction number R0(a) < L+ 1 across all the possible ages in the popula-
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tion. Therefore there is need for vigilant compartment of individuals in which
everyone adhere to the rules of keeping the mosquitoes at bay. The endemic
equilibrium is proved to be locally asymptotically stable whenever R0(ai) > 1.
It is further shown that the incidence of the disease can be curtailed if high
proportions of the susceptible and exposed humans are vigilant.
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