International Journal of Applied Mathematics Volume 29 No. 1 2016, 145-153 ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) doi: http://dx.doi.org/10.12732/ijam.v29i1.11 ### T_0 GRAPHS Seena V^{1 §}, Raji Pilakkat² ^{1,2}Department of Mathematics University of Calicut Malappuram (District), PIN 673 635, Kerala, INDIA **Abstract:** A simple graph G is said to be T_0 if for any two distinct vertices u and v of G, one of the following conditions hold: - 1. At least one of u and v is isolated; - 2. There exists an edge e such that either e is incident with u but not with v or e is incident with v but not with u. In this paper we discuss T_0 graphs and some examples of it. This paper also deals with the sufficient conditions for join of two graphs, middle graph of a graph and corona of two graphs to be T_0 . It is established via example that the line graph of a T_0 graph need not be T_0 . Moreover, the relations between T_0 graph with its incidence matrix and its adjacency matrix is discussed. ## AMS Subject Classification: 05C99 **Key Words:** T_0 graph, incidence matrix, adjacency matrix, line graph, corona, middle graph #### 1. Introduction All the graphs considered here are finite and simple. In this paper we denote the set of vertices of G by V(G), the set of edges of G by E(G), the maximum degree of G by $\Delta(G)$ and the minimum degree of G by $\delta(G)$. The degree [2] of a vertex v in graph G, denoted by deg(v), is the number of edges incident with v. A pendant vertex [7] in a graph G is a vertex of degree one. A vertex v is isolated [2] if deg(v) = 0. By an empty graph [5] Received: December 7, 2015 © 2016 Academic Publications [§]Correspondence author we mean a graph with no edges. A simple graph is said to be *complete* [9] if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_n . A graph is bipartite [5] if its vertex set can be partitioned into two subsets, X and Y so that every edge has one end in X and other end in Y; such a partition (X,Y) is called a bipartition of the bipartite graph. A simple bipartite graph is *complete* if each vertex of X is adjacent to all vertices of Y. A complete bipartite graph with |X| = m and |Y| = nis denoted by $K_{m,n}$. Given two graphs, G and H, we say H is an induced subgraph [3] of G if $V(H) \subseteq V(G)$, and two vertices of H are adjacent if and only if they are adjacent in G. In this case if V(H) = S, we write H = G[S] or $H = \langle S \rangle$. The union [1] of two graphs G_1 and G_2 denoted by $G_1 \cup G_2$ is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The line graph [1] L(G) of a graph G, is the graph whose vertex set is E(G) and edge set is $\{ef: e, f \in E(G) \text{ and } e, f \text{ have a vertex in common.}\}$ The join [4] of two graphs G_1 and G_2 denoted by $G_1 \vee G_2$ is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}$. The corona [4] of two graphs G_1 and G_2 is the graph $G = G_1 \circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 , where i^{th} vertex of G_1 is adjacent to every vertex in i^{th} copy of G_2 . The ring sum [8] of two graphs G_1 and G_2 , denoted by $G_1 \oplus G_2$, is the graph consisting of the vertex set $V(G_1) \cup V(G_2)$ and of edges that are either in G_1 or G_2 , but not in both. The middle graph [6] of G = (V(G), E(G)) is the graph $M(G) = (V(G) \cup E(G), E'(G))$, where $uv \in E'$ if and only if either u is a vertex of G and v is an edge containing u, or u and v are edges having a vertex in common. # 2. T_0 Graphs In this paper we introduce the concept of T_0 graphs. **Definition 1.** A graph G is said to be a T_0 -graph if for any two distinct vertices u and v of G, one of the following conditions hold: - 1. At least one of u and v is isolated - 2. There exists an edge e such that either e is incident with u but not with v or e is incident with v but not with u. Note that empty graphs are trivially T_0 . Figure 1: Graphs G and H. This new concept is termed as ' T_0 graph', because the topology generated by the collection of all two point sets consisting of the end vertices of edges of a T_0 graph G and singleton sets consisting of its isolated vertices is a T_0 topology on V(G). The graph G in Figure 1 is T_0 , where as the graph H in Figure 1 is not T_0 . The failure of the graph H to be T_0 is that K_2 is one of its component. This is the general feature of any T_0 graph. More explicitly we have the following theorem. **Theorem 2.** Let G be a graph with no K_2 as component, then G is a T_0 graph. Proof. Let u and v be two distinct non-isolated vertices of G. Since K_2 is not a component of G, there exists a vertex w distinct from u and v which is adjacent to u or v or both. Without loss of generality we can assume that w is adjacent to u. Then the edge e = uw is incident with u but not with v. Therefore, G is T_0 . **Remark 3.** The converse of Theorem 2 also holds good. Thus a necessary and sufficient condition for a graph G to be T_0 is that it does not contain K_2 as component. From the definition of T_0 graphs we have, - if G is a T_0 graph with no isolated vertices, then any supergraph of G is T_0 . - *n*-regular graphs are T_0 for every $n \neq 1$ - the cycle C_n is T_0 for every n - the path P_n is T_0 if $n \neq 2$ - the complete graph K_n is T_0 if $n \neq 2$. - the complete bipartite graph K_{mn} is T_0 if and only if both m and n are different from 1. **Theorem 4.** Let G_1 and G_2 be two isomorphic graphs. If G_1 is T_0 , so is G_2 . *Proof.* Given that G_1 and G_2 are isomorphic. Therefore, there exist bijections $f: V_1 \to V_2$ and $g: E_1 \to E_2$, such that g(uv) = f(u)f(v) for every $uv \in E_1$. Let u and v be two distinct vertices of G_2 . If one of u and v is isolated then there is nothing to prove. So suppose both u and v are non-isolated. Since f is a bijection there exist two distinct vertices x and y of G_1 such that f(x) = u and f(y) = v. Since G_1 is T_0 , there exists an edge e which is incident with x but not with y or which is incident with y but not with y. Without loss of generality assume that e is incident with x but not with y. Let us suppose that e = xp. Then $p \neq y$, therefore $f(p) \neq f(y)$ and g(e) = f(x)f(p) = uf(p) is an edge of G_2 incident with y but not with y. Hence the theorem holds. # 3. Incidence Matrix and Adjacency Matrix **Theorem 5.** Let G be a graph with vertex set $V(G) = \{v_1, v_2, \ldots v_n\}$, and edge set $E(G) = \{e_1, e_2, \ldots e_m\}$. Let $M = (m_{ij})$ be its incidence matrix. Then a necessary and sufficient condition that the graph G to be T_0 is that for any index j if there exists a pair of distinct indices (r, s) such that $m_{rj} = m_{sj} = 1$, then there should necessarily exists an index $i \neq j$ such that $m_{ri} = 1$ or $m_{si} = 1$. *Proof.* Suppose the hypothesis of the theorem holds. Then all the components of G are different from K_2 . Therefore, by Theorem 2, G is T_0 . Conversely assume that G is a T_0 graph. Suppose there exists an index j and a pair (r,s) of distinct indices such that $m_{rj}=m_{sj}=1$ and $m_{ri}=m_{si}=0$ for all $i\neq j$. The existence of such indices imply that the edge e_j is incident with the vertices v_r and v_s and the edge e_i is not incident with v_r and v_s for any $i\neq j$. Which Figure 2: Graph G and its line graph L(G). implies $e = v_r v_s$ is an edge of G and no other edges of G is incident with v_r or with v_s . Therefore, the graph induced by $\{v_r, v_s\}$ is K_2 . Hence G contains K_2 as component. Therefore, G can not be T_0 , a contradiction. Therefore, for any index j if there exist a pair of distinct indices (r, s) such that $m_{rj} = m_{sj} = 1$, then there should necessarily exists an index i such that $m_{ri} = 1$ or $m_{si} = 1$. \square Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots v_n\}$. Let $A = (a_{ij})$ be its adjacency matrix. Then G is a graph with K_2 as component if and only if there exist some pair of distinct indices (r, s) such that $a_{rs} = 1, \sum_{j=1}^{n} a_{rj} = 1, \sum_{j=1}^{n} a_{sj} = 1$. Therefore, we have: **Theorem 6.** Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots v_n\}$. Let $A = (a_{ij})$ be its adjacency matrix. Then G is a T_0 graph if and only if there does not exist a pair (r,s) of distinct indices such that $a_{rs} = 1, \sum_{j=1}^{n} a_{rj} = 1, \sum_{j=1}^{n} a_{sj} = 1$. ### 4. Line Graph of a Graph Figure 2 shows that line graph of a T_0 graph need not be T_0 . **Proposition 7.** Let G be a graph. If the path P_2 is not a component of G, then its line graph L(G) is T_0 . *Proof.* Let e_1 and e_2 be two distinct vertices of L(G). If one of them is isolated then there is nothing to prove. So suppose that both of them are non-isolated vertices of L(G). If e_1 and e_2 are not adjacent in L(G), then again Figure 3: The ring sum of two T_0 graphs. there is nothing to prove. If e_1 and e_2 are adjacent in L(G), then e_1 and e_2 incident in G. Since P_2 is not a component of G we can find an edge e of G which is adjacent to e_1 or e_2 or both. Suppose e is adjacent to e_1 in G. Then e_1e is an edge of L(G) incident with the vertex e_1 but not with e_2 . Hence the proposition. ### 5. Operations on Graph In this section we deal with union, ring sum and join of two graphs. **Proposition 8.** The union of T_0 graphs is T_0 . As the ring sum of two graphs with disjoint vertex sets is just their union, it is immediate from Proposition 8 the following. **Proposition 9.** The ring sum of two graphs with disjoint vertex set is T_0 if and only if both of them are T_0 . #### Example 10. Figure 3 shows that, the ring sum of two T_0 graphs need not be T_0 and Figure 4 shows that the ring sum of two non- T_0 graph may be T_0 . #### Example 11. Next, we consider the case of join of graphs. Figure 4: The ring sum of two non- T_0 graphs. **Theorem 12.** Let G_1 and G_2 be two graphs. Then $G_1 \vee G_2$ is T_0 if and only if either $|V(G_1)| \geq 2$ or $|V(G_2)| \geq 2$. Proof. Suppose $G_1 \vee G_2$ is T_0 . If possible $|V(G_1)| = |V(G_2)| = 1$, then $G_1 \vee G_2 \cong K_2$, which is not T_0 , a contradiction. Conversely, suppose that either $|V(G_1)| \geq 2$ or $|V(G_2)| \geq 2$. Without loss of generality we can assume that $|V(G_2)| \geq 2$. Since each vertex of G_1 is adjacent to every vertex of G_2 in $G_1 \vee G_2$ and $|V(G_2)| \geq 2$, K_2 cannot be a component of $G_1 \vee G_2$. Therefore, by Theorem 2, $G_1 \vee G_2$ is $G_2 \otimes G_2 \otimes G_3 \otimes G_4 \otimes G_4 \otimes G_5 \otimes G_5 \otimes G_6 \otimes$ #### 6. Corona and Middle Graph From the definition of corona of two graphs we have: **Proposition 13.** If G_1 is any graph and G_2 a graph with $|V(G_2)| \ge 2$ or if G_1 is a graph with no isolated vertices and G_2 any graph, then $G_1 \circ G_2$ is T_0 . *Proof.* In the first case, since each vertex v of G_1 is adjacent to every vertex of the copy of G_2 corresponding to v and $|V(G_2)| \geq 2$, K_2 cannot be a component of $G_1 \circ G_2$ Therefore, $G_1 \circ G_2$ is T_0 . In the second case, each vertex v of G_1 is adjacent to at least one vertex of G_1 . Therefore, each vertex of $G_1 \circ G_2$ which belongs to the copy of G_1 is adjacent to at least two vertices of $G_1 \circ G_2$ and each vertex of $G_1 \circ G_2$ which belongs to the copy of G_2 is adjacent to a vertex of the copy of G_1 . Therefore, $G_1 \circ G_2$ cannot contain K_2 as a component. Hence $G_1 \circ G_2$ is T_0 . The middle graph of a graph also behaves very nicely with the T_0 -axiom. **Theorem 14.** The middle graph M(G) of any graph G is T_0 . *Proof.* Let u and v be two distinct vertices of M(G). Suppose u and $v \in V(G)$. If one of them say u is isolated in G, then u is also an isolated vertex of M(G). So suppose both u and v are non-isolated vertices of G. Let e be an edge of G incident with u. Then ue is an edge of M(G) incident with u but not with v. Now suppose $u \in V(G)$ and $v \in E(G)$. Let w be a vertex of G distinct from u such that v is incident with w in G. Then vw is an edge of L(G) incident with v but not with v. Finally suppose $u, v \in E(G)$. Since $u \neq v$, there exist a vertex w of G such that u is incident with w in G. Then uw is an edge of M(G) incident with v but not with v Hence the theorem holds. #### 7. Conclusions In this paper T_0 graphs have been discussed with examples. Sufficient conditions for join of two graphs, middle graph of a graph, corona of two graphs to be T_0 have also been discussed. It is established via example that the line graph of a T_0 graph need not be T_0 . Furthermore, the relations of T_0 graph with its incidence matrix and adjacency matrix is discussed. # Acknowledgment The first author acknowledge the financial support by University Grants Commission of India, under Faculty Development Programme. #### References - [1] Douglas B. West, *Introduction to Graph Theory*, Prentice-Hall, USA (2000). - [2] F. Harary, Graph Theory, Narosa Publishing House, India (1990). [3] G. Chartrand, P. Zhang, *Chromatic Graph Theory*, CRC Press, USA (2009). - [4] C.E. Go, S.R. Canoy Jr., Domination in the corona and join of Graphs, *International Mathematical Forum*, **6** (2011), 763–771. - [5] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer-Verlag, USA (2008). - [6] K. Kavitha, N.G. David, Dominator chromatic number of middle and total graphs, *International Journal of Computer Applications*, 49 (2012), 42–46. - [7] K.R. Parthasarathy, Basic Graph Theory, McGraw-Hill Publ., USA (1994). - [8] S. Saha Ray, *Graph Theory with Algorithms and Its Applications*, Ser. Applied Science and Technology, Springer-Verlag, USA (2012). - [9] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer-Verlag, USA (2000).