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Abstract: In this paper we have investigated Complete Synchronization, Anti
Synchronization and Hybrid Synchronization between the Genesio chaotic dy-
namical system and Lü chaotic dynamical system using nonlinear active control
technique based on Lyapunov Stability theory. Further numerical simulations
are carried out to show the effectiveness of the method.
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1. Introduction

Chaos is an interesting nonlinear phenomenon and has been intensively studied
in the last three decades. Chaos theory has been applied in many scientific
disciplines such as Mathematics, Economics, Microbiology, Biology, Ecology,
Computer Science and Robotics.
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A chaotic system is a special non linear dynamical system, which has many
properties such as the sensitivity to initial conditions as well as an irregular,
unpredictable behaviour. During the last few years synchronization in chaotic
dynamical systems has received a great deal of attention for the scientists from
various fields [2, 5, 6, 18, 41].

In 1990, Pecora and Carroll developed control techniques to synchronize
two identical chaotic systems and showed that it was possible for some chaotic
systems to be completely synchronized. From then on, chaos synchronization
has emerged as an important area of research in many fields such as physical
systems [7, 20], chemical systems [11, 25], ecological systems [3] and secure
communication [4, 19, 38] etc.

A wide variety of approaches has been used for the synchronization of
chaotic systems such as active control method [1, 12, 13, 17, 32], adaptive
control [23, 36], backstepping design [37, 39], OGY method [26], sampled- data
feedback synchronization method [24, 44], time delay feedback method [28],
sliding mode control method [31, 35] and PC method [29], etc. However most
of these methods synchronize two identical chaotic systems. But in many prac-
tical problems such as laser array and biological systems, it is hardly the case
that every component can be assumed to be identical. More and more appli-
cations of chaos synchronization in secure communication make it even more
important to synchronize two different chaotic systems. In recent years, some
works on synchronization of two different chaotic systems have been performed
[12, 27, 42]. So far many Synchronization phenomenon have been presented
such as complete synchronization [16], phase synchronization [8], anti synchro-
nization [16, 33, 43],generalized synchronization [40], hybrid synchronization
[14, 15, 16, 34], projective synchronization [30] and generalized projective syn-
chronization [21], etc.

In this paper we study the chaos synchronization between two different
chaotic systems using active nonlinear control method. The stability results de-
rived in this paper are established using Lyapunov stability theory. The Genesio
system is taken as the master system and the Lü system as the slave system.
This paper is organized as follows. In Section 2, we provide a description of
the chaotic systems. In Section 3, we discuss the Complete synchronization,
Anti synchronization and Hybrid synchronization between the Genesio chaotic
system and the Lü chaotic dynamical system using active control. In Section
4, we discuss the numerical simulations.
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2. System Description

The master system is described by the Genesio system, proposed by Genesio et
al. [9, 32] capturing many features of chaotic systems. It includes three simple
ordinary differential equations that depend on three positive real parameters.
The dynamical equations are given by

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −cx1−bx2−ax3 + x21,















(1)

where x1, x2 and x3 are state variables and a, b and c are positive constants
satisfying ab < c. The system exhibits a chaotic behaviour for the parameters
values a = 1.2, b = 2.92 and c = 6, shown in Fig. 1.

The slave system is described by the Lü system, [22] is a typical transition
system, which connects the Lorenz and Chen attractors and represents the
transition from one to the other,that captures many features of chaotic systems.
The dynamical equations are given by

ẏ1 =α(y2 − y1),

ẏ2 =γy2 − y1y3,

ẏ3 = −βy3 + y1y2,















(2)

where y1, y2 and y3 are state variables and α, β and γ are positive constants.
The system exhibits a chaotic behaviour for the parameters values α = 36, β
= 3 and γ = 20 as shown Fig. 2.
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Fig.1 Genesio chaotic system
with

a = 1.2, b = 2.92 and c = 6
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Fig.2 Lü chaotic system with
α = 36, β = 3 and γ = 20

3. Complete Synchronization, Anti Synchronization and Hybrid

Synchronization between Genesio Chaotic System and Lü

Chaotic System

3.1. Complete Synchronization

Complete synchronization is characterized by the equality of state variables
evolving in time. As the master system we consider the Genesio dynamical
system defined by

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −cx1−bx2−ax3 + x21,















(3)

where x1, x2 and x3 are state variables and a, b and c are unknown, real,
constant parameters satisfying ab < c.

As the slave system, we consider the Lü dynamical system described by

ẏ1 =α(y2 − y1) + u1,

ẏ2 =γy2 − y1y3 + u2,

ẏ3 = −βy3 + y1y2 + u3,















(4)
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where y1, y2 and y3 are state variables, α, β and γ are unknown, real, constant
parameters and u1, u2 and u3 are control functions to be designed. The syn-
chronization errors ei, i = 1, 2, 3 are defined by ei = yi − xi. From (3) and (4),
we obtain the error dynamics as follows:

ė1 =α(y2 − y1)− x2 + u1,

ė2 =γy2 − y1y3 − x3 + u2,

ė3 = −βy3 + y1y2+cx1+bx2+ax3 − x21 + u3.















(5)

We choose the nonlinear controllers as

u1 = −α(y2 − y1) + x2 − k1e1,

u2 = −γy2 + y1y3 + x3 − k2e2,

u3 =βy3 − y1y2−cx1−bx2−ax3 + x21 − k3e3,















(6)

where k1, k2 and k3 are positive constants. Substituting (6) into (5), we get

ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.















(7)

Consider the Lyapunov function defined by

V (e) =
1

2
(e21 + e22 + e23). (8)

Differentiating (8) along the trajectories of (7) we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 (9)

which is a negative definite function on R
2. Thus by Lyapunov stability theory

[10], the error dynamics (7) is found to be asymptotically stable and converges
to zero exponentially with time and thus complete synchronization is achieved
between master system (3) and slave system (4). Hence the non-identical Gen-
esio system (3) and Lü system (4) are exponentially and globally synchronized
using nonlinear active control law.
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3.2. Anti Synchronization

Anti synchronization is characterized by the disappearance of the sum of rel-
evant variables evolving in time. To observe anti synchronization between the
master system and the slave system, we first define the synchronization errors
ei, i = 1, 2, 3 by ei = yi + xi. From (3) and (4), we obtain the error dynamics
as follows:

ė1 =α(y2 − y1) + x2 + u1,

ė2 =γy2 − y1y3 + x3 + u2,

ė3 = −βy3 + y1y2−cx1−bx2−ax3 + x21 + u3.















(10)

We choose the nonlinear controllers as

u1 = −α(y2 − y1)− x2 − k1e1,

u2 = −γy2 + y1y3 − x3 − k2e2,

u3 =βy3 − y1y2+cx1+bx2+ax3 − x21 − k3e3,















(11)

where k1, k2 and k3 are positive constants. Substituting (11) into (10), we get

ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.















(12)

Consider the Lyapunov function defined by

V (e) =
1

2
(e21 + e22 + e23). (13)

Differentiating (13) along the trajectories of (12) we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 (14)

which is a negative definite function on R
2. Thus by Lyapunov stability theory

[10], the error dynamics (12) is found to be asymptotically stable and converges
to zero exponentially with time and hence anti synchronization is achieved
between master system (3) and slave system (4).

Thus the non-identical Genesio system (3) and Lü system (4) are exponen-
tially and globally anti synchronized for all initial conditions using nonlinear
controller defined by (11).
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3.3. Hybrid Synchronization

In Hybrid synchronization of chaotic systems, one part of the system is synchro-
nized and the other part is anti synchronized so that complete synchronization
and anti synchronization exist together in the system. This coexistence of
complete synchronization and anti synchronization is useful in secure commu-
nication and chaotic encryption schemes. The Hybrid synchronization errors
are defined by

e1 = y1 − x1,

e2 = y2 + x2,

e3 = y3 − x3.















(15)

Here, we see that one part of the two chaotic systems is completely synchro-
nized and the other part is anti synchronized so that complete synchronization
and anti synchronization exist together in the synchronization of systems (3)
and (4).

From (3) and (4) we obtain the error dynamics as follows:

ė1 =α(y2 − y1)− x2 + u1,

ė2 =γy2 − y1y3 + x3 + u2,

ė3 = −βy3 + y1y2+cx1+bx2+ax3 − x21 + u3.















(16)

We choose the nonlinear controllers as

u1 = −α(y2 − y1) + x2 − k1e1,

u2 = −γy2 + y1y3 − x3 − k2e2,

u3 =βy3 − y1y2−cx1−bx2−ax3 + x21 − k3e3,















(17)

where k1, k2 and k3 are positive constants. Substituting (17) into (16), we get

ė1 = −k1e1,

ė2 = −k2e2,

ė3 = −k3e3.















(18)

Consider the Lyapunov function defined by

V (e) =
1

2
(e21 + e22 + e23). (19)
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Differentiating (19) along the trajectories of (18), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 (20)

which is a negative definite function on R
2. Thus by Lyapunov stability theory

[10], the hybrid synchronization errors ei , i = 1, 2, 3 converges to zero expo-
nentially with time. In the similar manner, the 5 other hybrid synchronization
phenomena can be described. We find that in all the cases after defining the
control functions ui, i = 1, 2, 3 the linear error system obtained is identical to
the one defined in (18). Hence the hybrid synchronization is attainable in all
the cases. Thus the non-identical Genesio system (3) and Lü system (4) are
exponentially and globally hybrid synchronized using nonlinear active control
law.

4. Numerical Simulations

For simulations, the parameters of the Genesio Chaotic system are chosen as
a = 1.2, b = 2.92 and c = 6. The parameters of Lü chaotic system are chosen
as α = 36, β = 3 and γ = 20. The initial conditions of the master and slave
system are chosen as x(0) = (3,−4, 2) and y(0) = (−10,−11, 5), respectively.
For complete synchronization, the control functions defined by (6) are used and
the systems (3) and (4) are simulated, for anti synchronization, the control
functions defined by (11) are used and the systems (3) and (4) are simulated
and for hybrid synchronization, the control functions defined by (17) are used
and the systems (3) and (4) are simulated. The results of the simulation of
the two non identical chaotic systems without active control are shown in Fig.
3: (a) displays the x1 and y1, (b) displays the x2 and y2, and (c) displays
the x3 and y3, where x1, x2 and x3 are state variables of the Genesio Chaotic
system and y1, y2 and y3 are state variables of the Lü chaotic system. Fig. 4
(a) − (c) display the same sequence of signals, when completely synchronized
using the active control. The corresponding time series analysis graph of the
synchronization errors are given in Fig. 5 (a) − (c).
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Fig. 6 (a) − (c) display the same sequence of signals, when the signals
are anti synchronized using the active control. The corresponding time series
analysis graph of the synchronization errors are given in Fig. 7 (a) − (c).
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Fig. 8 (a) − (c) display the same sequence of signals, when the signals are
hybrid synchronized using the active control. The corresponding time series
analysis graph of the synchronization errors are given in Fig. 9 (a) − (c).
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5. Conclusion

In this paper, we have investigated synchronization behavior between the Gen-
esio chaotic system and the Lü chaotic system via active control method and
Lyapunov stability theory. Since the Lyapunov exponents are not needed for
these calculations, the nonlinear control method is very effective and convenient
to achieve global chaos complete synchronization, anti synchronization and hy-
brid synchronization between the systems studied in this paper. The results
are validated by numerical simulations using Mathematica and Matlab both.
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