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Abstract: This article presents a simple but efficient method for pricing Euro-
pean call option in exponential Lévy model when the interest rate is stochastic
with jumps. We relax two assumptions in the Black and Scholes model: geo-
metric Brownian motion for asset price and constant interest. The asset price
is assumed to be given by a more general stochastic process, the Lévy process,
and the interest rate in the market has stochastic paths with jumps. The result-
ing partial-integro differential equation(PIDE) for the option price is reduced
to a system of first order partial differential equation, which is easier to solve.
Hence, the option price and its sensitivities are easily obtained.
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1. Introduction

In the Black and Scholes [3] model, the price of European option is obtained
in closed-form, under the assumption that the only source of uncertainty is the
price of the underlying asset, which is assumed to follow a geometric Brownian
motion with constant drift and constant volatility. It is also assumed in this
model that the risk-free interest rate in the market remains constant throughout
the journey of the option. These assumptions have been criticized widely by
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many, in that they contribute to the inability of the model to capture the
important features of asset returns. In this regard, there have being some
efforts to relax some of these assumptions.

The assumption of single source of uncertainty in the Black and Scholes
model was relaxed by proposing stochastic volatility models e.g. Heston [8],
Stein and Stein [14]. In these models, the volatility of the asset price is al-
lowed to follow another stochastic differential equation with a different stan-
dard Brownian motion. On the other hand, to relax the assumption of geometric
Brownian motion, models which have jumps in their paths were proposed. In
these models, the asset price is assumed to be given by an exponential Lévy
process. Exponential Lévy processes are of two categories: the first category
is the jump-diffusion models which are a combination of a Brownian motion
and a compound Poisson process with given distribution of jump sizes, e.g
jump-diffusion process of Merton [13], and double exponential jump process of
Kou [9]. The second category has only the jump component, e.g the variance
gamma process of Madan and Milne [11], and Normal Inverse Gaussian process
of Barndorff-Nielsen [2], etc.

In using these Lévy processes for financial modeling, either the interest rate
is constant, or it varies stochastically until the option matures e.g. see ([5], [1],
[6], [10]) and bibliographies therein. In models with constant interest rate, it is
possible to obtain a closed-form formula for the option price, while in models
with stochastic interest rate, close-form formula is impossible, and numerical
methods are used.

To price a European option in exponential Lévy model with stochastic in-
terest rate, we assume that the asset price X; is a Lévy process of exponential
type, and the interest rate in the market is not only stochastic but exhibits
jumps in its paths.Further, we assume that the interest rate r; is a stochastic
function of a Markov process Y;: r = r(Y}),with state space D = R, where Y} is
given by the mean-reverting process of CIR-type [7]. We convert the resulting
PIDE for the option price to a system of first order partial differential equation.
This system is easier to solve to obtain the option price and its sensitivities.

The rest of this paper is organized as follows: For the rest of Section 1,
we present some of the basic facts from the theory of Lévy processes that are
needed in the formulation of the model. In Section 2, we formulate the model,
and formula for the option price and its sensitivities. In Section 3, we implement
the model and conclude.



ON PRICING EUROPEAN CALL OPTION ON... 221

1.1. Brief on Lévy Processes

Lévy processes are stochastic processes with stationary and independent incre-
ments. A general 1-dimensional Lévy process can be represented as

e—0

where wy is a 1-dimensional Brownian motion, v € R, N; is a compound Poisson
process which includes the jumps of X;, and M{ is a compensated compound
Poisson process which includes the jumps of X; with ¢ < |AX;| < 1. The
characteristic function of the distribution of X; can be represented in the form

ElemXt] = e WM peR, t>0.

The function v is called the characteristic exponent for X. The general form
of characteristic exponent of any Lévy process can be deduced from the Lévy-
Khintchine formula

2

Y(n) = %?f — ibn +/ (1+inal_y y(x) — ") F(dz), (2)
R\O

where 0 > 0,b € R, and F' is a measure on R\0 satisfying
/ (|2, 1} F(dz) < oo,
R\0

As an example, we use a variance gamma (VG) process, which is a pure jump
process with density of jumps given by

F(dz) = c+e’\*x:c_11(07+oo)(:c)d:c + c,e’\+x:c_11(_ooyo) (x)dz.

Here, 1¢,4) is an indicator function of the interval (a,b). The coefficients c
(respectively, c_) gives the intensity of upwards jumps(respectively, downward
jumps). The characteristic exponent of the VG process can be obtained from
(2):

() = clin(=A- —in) = In(=A-) +In(Ay —in) — In(Ay)].

2. Pricing European Option with Stochastic Interest Rate

Let (2,B, P, f;) be the underlying filtered probability space, where f; is the
filtration which represents the information available up to time ¢. The interest
rate in the market is a stochastic function of a Markov process Y;: 7, = r(Y})
with state space D = R. The underlying asset price is modeled as S; = exp(X;+
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Y:), where X; is an exponential Lévy process. The processes X; and Y; are
assumed to be strong solution to the stochastic differential equations

dX; = p(Ye)dt + dJ7, 3)

dY; = (B — Yy)dt + o/ (Yy)dw; + dJ?, (4)

where dw; is the increment of standard Brownian motion, dJj and d.J; are
increments of pure jump Lévy processes of exponential type (A_,A;). We
assume that the drift p(Y;) of dX; is affine in Y; such that pu(Y;) = po + 1Y,
where g and py are positive real constants, a > 0 is the coefficient of mean
reversion, S > 0 is the long-run mean level of Y}, and ¢ > 0 is the volatility of
Y;.

Consider a European call option with strike K and expiry date T', under the
chosen risk-neutral measure @ for pricing, the value V (¢, z,y), of this contingent
claim is given by

T
V(t,z,y) = E@®¥e Jo "dds g X, vop)), (5)
where G(Xr, Yr) = eX7TY7 — (| is the payoff function. Applying the Feynman-
Kac theorem, we get that V (¢, x,y) satisfy the backward Kolmogorov equation:

2
(O + a(B —y)o, + %yai + (po + p1y)9z + Ly + Ly — y)V (t,z,y) =0, (6)

where L, andL, are the infinitesimal generators that act with respect to x and
y respectively as

Lo(x) = /R ot )~ o) ()

Given that the coefficients in (6) are affine, we propose a solution of the
form

V(t,n,z,y) = exp(A(r,n)z + B(r,n)y + C(7,n)), (7)

subject to V(T,n,z,y) = eM@tY)  where T = T — t is the time to maturity of
the option. Substituting (7) into (6) and simplifying, we obtain a system of
first order differential equations

_AT(Tv 77) =0, (8)
22
_BT(Tvn)+O- b _aB+N1A_1:07 (9)
_CT(T7 77) + :UOA + OéﬁB - ¢(_ZA) - w(_ZB) = 07

subject to A(0,n) = in, B(0,n) =in, C(0,n) = 0.
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It is easy to see that A(7,n) = in. The solution for B(7,n) is known

analytically:
y Yy Bl . BQGBl_B2€(Bl_BQ)T
B(T7 77) = 1— GB1732 6(31*32)7

(10)

. 1
with G = (22:—%)31—32, where
at /a2 +202(1 —ipn)

solves the quadratic equation "2232 —aB+upA—-1=0.

For C'(7,n), we consider numerical solution since the Lévy exponents, )(—iA)
and 1(—iB) are complicated in nature for known Lévy processes. We use
Runge-Kutta order 4 method, known to produce results that are close to ana-

lytical solutions.

2.1. The Greeks

In this subsection, we obtain closed-form formula for some of the sensitivities
of the contingent claim, based on our model.

delta(A):

The delta of the option calculates how sensitive the option price is, with
respect to the price of the asset. It is given as the partial derivative of the
option price with respect to the asset price

oV (t,z,y)
050
= Aexp((A-1z+ (B-1)y+0C). (11)

A:

gamma(T):
The gamma is the second order partial derivative of V' (¢, z,y) with respect
to the asset price

0A
r=—.
050
Therefore,
I'=A(A—-1)exp((A—2)z+ (B—-2)y+C). (12)
theta(©):
The theta © of the option price is calculated as

or
= (Arz + Bry+ Cr) exp(Ax + By + C).
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Figure 1: Call option values and its sensitivities

Rho(p):
The option rho(p) is the sensitivity of the option price with respect to the
interest rate. Hence,

IV (t,z,y)
= " 14
P e (14)
and
p = B exp(Ax + By + C). (15)

3. Numerical Example and Conclusion

In this section, we produce some numerical results based on the model proposed
in this paper. We assume that the Lévy exponents v, (n) and ,(n) are given
by ¥(n) = clln(—=A_- —in) — In(—=A_) + In(Ay —in) — In(Ay)]. The following
parameters for the processes are used; A_ = —1, AL =1,

c=0.025a=0.1,8 =0.15,0 = 0.5, ug = 15, 41 = 0.25. For this market, we
calculate the price, delta, gamma and rho of European call option on the stock
S; = Xttt with strike K = 100 and maturity date 7=1 year. The results of
our calculations are presented graphically in Figure 1.
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3.1. Concluding Remarks

We have obtained analytical expressions for the European call option price and
its sensitivities in Lévy models with jumps in interest rate. These expressions
are easy to implement, and do not require numerical approximations.
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