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1. Introduction

Recently, the area of the q-analysis has attracted serious attention of researchers.
The great interest is due to its applications in various branches of mathematics
and physics, as for example, in the areas of ordinary fractional calculus, opti-
mal control problems, q-difference and q-integral equations and in q-transform
analysis. The generalized q-Taylor formula in the fractional q-calculus was in-
troduced by Purohit and Raina [14]. The application of q-calculus was initiated
by Jackson [5, 6]. He was the first to develop the q-integral and q-derivative in
a systematic way. Later, geometrical interpretation of the q-analysis has been
recognized through studies on quantum groups. Simply, the quantum calculus
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is ordinary classical calculus without the notion of limits. It defines q-calculus
and h-calculus. Here h ostensibly stands for Planck’s constant, while q stands
for quantum. Mohammed and Darus [10] studied approximation and geomet-
ric properties of these q-operators in some subclasses of analytic functions in
compact disk, recently Purohit and Raina in [14, 15] have used the fractional q-
calculus operators in investigating certain classes of functions which are analytic
in the open disk, and Purohit [13] also studied these q-operators, defined by us-
ing the convolution of normalized analytic functions and the q-hypergeometric
functions. A comprehensive study on applications of q-calculus in the operator
theory may be found in [2]. Ramachandran et al. [16] have used the fractional
q-calculus operators in investigating certain bound for q-starlike and q-convex
functions with respect to symmetric points.

Let A be denote the class of analytic functions f(z) of the form

f(z) = z +

∞
∑

k=2

akz
k, (1)

defined on the open unit disk U.
Also let S be the subclass of A consisting of the univalent functions in U.
Recalling the principal of subordination between analytic functions, let

the functions f and g be analytic in U. Then we say that the function f is
subordinate to g, if there exists a Schwartz function ω, analytic in U with
ω(0) = 0 and |ω(z)| < 1, such that f(z) = g(ω(z)). We denote this subordina-
tion by f ≺ g, or f(z) ≺ g(z). In particular, if the function g is univalent in U,
the above subordination is equivalent to (see [3, 9]) f(0) = g(0)andf(U) ⊂ g(U).
Also, Jackson [5, 6] q-derivative and q-integral of a function f ∈ A and 0 < q < 1
defined on a subset of C are, respectively, given by

Dqf(z) =
f(z)− f(qz)

(1− q)z
, z 6= 0, (2)

Dqf(0) = f ′(0) and D2
qf(z) = Dq(Dqf(z)). From (2), we have Dqf(z) =

1 +
∞
∑

k=2

[k]qakz
k−1, where [k]q = 1−qk

1−q
. If q → 1−1, [k]q → k. For a function

h(z) = zk, we observe that Dq(h(z)) = Dq(z
k) = 1−qk

1−q
zk−1 = [k]qz

k−1 and

limq→1Dq(h(z)) = limq→1

(

[k]qz
k−1
)

= kzk−1 = h′(z), where h′ is the ordinary
derivative. As a right inverse, Jackson [5] introduced the q-integral

z
∫

0

f(t)dqt = z(1− q)

∞
∑

k=0

qkzqk,
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provided that the series converges. For a function h(z) = zk, we observe that

z
∫

0

h(t)dqt =

z
∫

0

tkdqt =
zk+1

[k + 1]q
, k 6= −1

and limq→−1

z
∫

0

h(t)dqt = limq→−1
zk+1

[k+1]q
= zk+1

k+1 =
z
∫

0

h(t)dt, where
z
∫

0

h(t)dt is

the ordinary integral.

Definition 1. Let φ(z) = 1 + B1z + B2z
2 + · · · be a univalent starlike

function with respect to 1 which maps the open unit disk U onto a region in
the right half plane which is symmetric with respect to the real axis, and let
B1 > 0, 0 ≤ α < 1 and b ∈ C \ {0}. The function f ∈ S is in the class
Mα(q, b, φ), if

1 +
1

b

[

(1− α)

(

zDqf(z)

f(z)
− 1

)

+ α

(

Dq(zDqf(z))

Dqf(z)

)]

≺ φ(z).

We note that

• If α = 0, limq→1− M0(q, b, φ) = Sb(φ) and α = 1,
limq→1− M1(q, b, φ) = Cb(φ), [17].

• If α = 0, limq→1− M0(q, 1, φ) = S(φ) and α = 1,
limq→1− M1(q, 1, φ) = C(φ), [8].

• If α = 0 limq→1− M0

(

q, b, 1+(1−2η)z
1−z

)

= S∗
η (b) and α = 1,

lim
q→1−

M1

(

q, b,
1 + (1− 2η)z

1− z

)

= Cη(b), (b ∈ C \ 0, 0 ≤ η ≤ 1),

[4].

• If α = 0, limq→1− M0

(

q, b, 1+z
1−z

)

= S∗(b), [11].

• If α = 1, limq→1− M1

(

q, b, 1+z
1−z

)

= C(b), [11].

• If α = 0, limq→1− M0

(

q, 1− η, 1+z
1−z

)

= S∗(η) and α = 1,

lim
q→1−

M1

(

q, 1− η,
1 + z

1− z

)

= C(η),

(0 ≤ η ≤ 1), [18].
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• If α = 0, limq→1− M0

(

q, be−iθcosθ, 1+z
1−z

)

= Sθ(b) and α = 1,

lim
q→1−

M1

(

q, be−iθcosθ,
1 + z

1− z

)

= Cθ(b, (| θ |≤ π/2, b ∈ C \ 0),

[1].

In the present paper, we obtain the Fekete-Szegö inequality for functions in
a more general class Mα(q, b, φ) of functions which we define above. Also we
give applications of our results to certain functions defined through convolution
(or the Hadamard product) and in particular we consider a class Mρ

α(q, b, φ)
of functions defined by fractional derivatives. The motivation of this paper is
to generalize the results obtained by Seoudy and Aouf [19]. In order to derive
the main result the following lemmas are required.

Lemma 2. ([8]) If p(z) = 1+ c1z+ c2z
2+ . . . is an analytic function with

a positive real part in U, then

|c2 − µc21| ≤







−4µ+ 2 if µ ≤ 0,
2 if 0 ≤ µ ≤ 1,
4µ − 2 if µ ≥ 1.

When µ < 0 or µ > 1, the equality holds if and only if p(z) is
1 + z

1− z
or one

of its rotations. If 0 < µ < 1, then the equality holds if and only if
1 + z2

1− z2
or

one of its rotations. Equality holds if and only if

p(z) =

(

1

2
+

1

2
β

)

1 + z

1− z
+

(

1

2
−

1

2
β

)

1− z

1 + z
(0 ≤ β ≤ 1),

or one of its rotations. If µ= 1, the equality holds if and only if p(z) is the
reciprocal of one of the function such that the equality holds in the case of µ
= 0. Also the above upper bound is sharp, it can be improved as follows when
0 < µ < 1: |c2−µc21|+(µ)|c1|

2 ≤ 2(0 < µ ≤ 1/2) and |c2−µc21|+(1−µ)|c1|
2 ≤

2(1/2 < µ ≤ 1).

Lemma 3. ([8]0 If p(z) = 1+ c1z+ c2z
2+ . . . is a function with a positive

real part in U then for any complex number ν, then
∣

∣c2 − νc21
∣

∣ ≤ max{1; |2ν −

1|}. The result is sharp for the functions p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
.
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2. Main Results

Applying Lemma 2, we first derive the following result.

Theorem 4. Let 0 < q < 1, b ∈ C \ {0} and φ(z) = 1 +B1z +B2z
2 + · · ·

with B1 > 0. If f(z) given by (1) belongs to Mα(q, b, φ), then

|a3 − µa22| ≤



























B1|b|
α1

(

B2

B1
− α2+µα1

α3
B1b

)

if µ ≤ σ1,

B1|b|
α1

if σ1 ≤ µ ≤ σ2,

−B1|b|
α1

(

B2

B1
− α2+µα1

α3
B1b

)

if µ ≥ σ2.

Further, if σ1 ≤ µ ≤ σ3, then

|a3 − µa22|+
α3

B2
1bα1

[

B1 −B2 +
B2

1b

α3
(α2 + µα1)

]

| a22 |≤
B1b

α1
.

Further, if σ3 ≤ µ ≤ σ2, then

|a3 − µa22|+
α3

B2
1bα1

[

B2 +B1 −
B2

1b

α3
(α2 + µα1)

]

| a22 |≤
B1b

α1
,

where

σ1 =
(B2 −B1)α3 − α2B

2
1b

B2
1bα1

,

σ2 =
(B2 +B1)α3 − α2B

2
1b

B2
1bα1

and

σ3 =
B2α3 − α2B

2
1b

B2
1bα1

,

and assume that

α1 = ([2]q[3]q − [3]q + 1)α+ [3]q − 1, (3)

α2 =
(

[2]q − [2]2q − 1
)

α− [2]q + 1 (4)

and

α3 = ([2]q + α− 1)2 . (5)

The results are sharp.
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Proof. If f ∈ Mα(q, b, φ), then by the Definition 1, we have

1 +
1

b

[

(1− α)

(

zDqf(z)

f(z)
− 1

)

+ α

(

Dq(zDqf(z))

Dqf(z)

)]

≺ φ(z).

By the subordination principle, there exists a Schwartz function ω(z) analytic
in U with ω(0) = 0 and |ω(z)| < 1 in U such that

1 +
1

b

[

(1− α)

(

zDqf(z)

f(z)
− 1

)

+ α

(

Dq(zDqf(z))

Dqf(z)

)]

= φ(ω(z)).

Let a function p(z) be defined by

p(z) = 1 +
1

b

[

(1− α)

(

zDqf(z)

f(z)
− 1

)

+ α

(

Dq(zDqf(z))

Dqf(z)

)]

= 1 + b1z + b2z
2 + · · · .

Hence b1 =
([2]q+α−1)

b
a2, and

b2 =
1

b
{[([2]q[3]q − [3]q + 1)α+ [3]q − 1] a3

+
[(

[2]q − [2]2q − 1
)

α− [2]q + 1
]

a22
}

.

Since φ(z) is univalent and p ≺ φ, then the function p1(z) =
1+φ−1(p(z))
1−φ−1(p(z))

=

1 + c1z + c2z
2 + · · · is analytic and has positive real part in U . Thus we have

p(z) = φ

(

p1(z) − 1

p1(z) + 1

)

(6)

and from the equation (6)

b2 =
1

2
B1

(

c2 −
1

2
c21

)

+
1

4
B2c

2
1,

and

b1 =
1

2
B1c1.

Hence, we have a2 =
bB1c1

2([2]q+α−1) and

a3 =
bB1

2 [([2]q[3]q − [3]q + 1)α+ [3]q − 1]

×

[

c2 −
1

2

(

1−
B2

B1
+

(

[2]q − [2]2q − 1
)

α− [2]q + 1

([2]q + α− 1)2
B1b

)

c21

]

.
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Therefore,

a3 − µa22 =
bB1

2 [([2]q[3]q − [3]q + 1)α+ [3]q − 1]

(

c2 − νc21
)

, (7)

where

ν =
1

2

(

1−
B2

B1
+

α2 + α1µ

α3
B1b

)

. (8)

Theorem 4 follows now by an application of Lemma 2. To show that these
bounds are sharp, we define the functions Kφn(n = 2, 3, 4, ...) by

1 +
1

b

[

(1− α)

(

zDqKφn(z)

f(zKφn(z))
− 1

)

+ α

(

Dq(zDqKφn(z))

DqKφn(z)

)]

= φ(zn−1)

with Kφn(0) = 0 = K′
φn(0) − 1.

The functions Fδ and Gδ(0 ≤ δ ≤ 1) are defined by

1 +
1

b

[

(1− α)

(

zDqFδ(z)

Fδ(z)
− 1

)

+ α

(

Dq(zDqFδ(z))

DqFδ(z)

)]

= φ

(

z(z + δ)

1 + δz

)

withFδ(0) = 0 = F ′
δ(0)− 1 and

1 +
1

b

[

(1− α)

(

zDqGδ(z)

Gδ(z)
− 1

)

+ α

(

Dq(zDqGδ(z))

DqGδ(z)

)]

= φ

(

−
1 + δz

z(z + δ)

)

with Gδ(0) = 0 = G′
δ(0)− 1.

Clearly, the functions Kφn,Fδ and Gδ are in Mα(q, b, φ). Also we write
Kφ =: Kφ2. If µ < σ1 or µ > σ2, then the equality holds if and only if f is Kφ,
or one of its rotations. When σ1 ≤ µ ≤ σ2, then the equality holds if and only
if f is Kφ3 or one of its rotations. If µ = σ1, then the equality holds if and only
if f is Fδ or one of its rotations. If µ = σ2, then the equality holds if and only
if f is Gδ or one of its rotations.

Next we derive the following result.

Theorem 5. Let 0 < q < 1, b ∈ C \ {0} and φ(z) = 1 +B1z +B2z
2 + · · ·

with B1 6= 0. If f(z) given by (1) belongs to Mα(q, b, φ), then

|a3 − µa22| ≤
B1 | b |

α1
max

{

1;
B2

B1
+

(

α1 − α2

α3
µ

)

B1b

}

,

where α1, α2 and α3 are defined by (3), (4) and (5). The result is sharp.
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Proof. Our result now follows by an application of Lemma 3. The result is

sharp for the functions
zDqf(z)
f(z) = φ(z2) and

zDqf(z)
f(z) = φ(z). This completes the

proof of Theorem 5.

For the special case b = 1 and limq→1− , the function Mα(q, b, φ) given by
Definition 1 has the form respectively:

Mα(q, b, φ) := Mα(q, 1, φ) (9)

and

Mα(q, b, φ) := Mα(b, φ). (10)

Consequently, from Theorems 4 and 5, we can deduce respectively the follow-
ing corollaries which represent the sharp upper bound for the function defined
above.

Corollary 6. Let 0 < q < 1 and φ(z) = 1+B1z+B2z
2+ · · · with B1 > 0

and B2 ≥ 0. If f(z) given by (1) belongs to Mα(q, 1, φ), then

|a3 − µa22| ≤



























B1

α1

(

B2

B1
− α2+µα1

α3
B1

)

if µ ≤ β1,

B1

α1
if β1 ≤ µ ≤ β2,

−B1

α1

(

B2

B1
− α2+µα1

α3
B1

)

if µ ≥ β2,

where α1, α2 and α3 are given by (3), (4) and (5) and

β1 =
(B2 −B1)α3 − α2B

2
1

B2
1α1

,

β2 =
(B2 +B1)α3 − α2B

2
1

B2
1α1

and

β3 =
B2α3 − α2B

2
1

B2
1α1

.

Further, if β1 ≤ µ ≤ β3, then

|a3 − µa22|+
α3

B2
1α1

[

B2 −B1 +
B2

1

α3
(α2 + µα1)

]

≤
B1

α1
.
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Further, if β3 ≤ µ ≤ β2, then

|a3 − µa22|+
α3

B2
1α1

[

B2 +B1 −
B2

1

α3
(α2 + µα1)

]

≤
B1

α1
.

The results are sharp.

Corollary 7. Let 0 < q < 1 and b ∈ C\{0} and φ(z) = 1+B1z+B2z
2+· · ·

with B1 6= 0. If f(z) given by (1) belongs to Mα(q, 1, φ), then

|a3 − µa22| ≤
B1

α1
max

{

1;
B2

B1
+

(

α1 − α2

α3
µ

)

B1

}

,

where α1, α2 and α3 are denoted by (3), (4) and (5). The result is sharp.

Corollary 8. Let b ∈ C \ {0} and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. If f(z) given by (1) belongs to Mα(b, φ) with b > 0, then

|a3 − µa22| ≤



























B1|b|
2(1+α)

(

B2

B1
− γ4B1b

)

if µ ≤ γ1,

B1|b|
2(1+α) if γ1 ≤ µ ≤ γ2,

− B1|b|
2(1+α)

(

B2

B1
− γ4B1b

)

if µ ≥ γ2,

where

γ1 =
(B2 −B1) (1 + α)2 + (3α+ 1)B2

1b

2B2
1b(1 + α)

,

γ2 =
(B2 +B1) (1 + α)2 + (3α+ 1)B2

1b

2B2
1b(1 + α)

,

γ3 =
B2 (1 + α)2 + (3α+ 1)B2

1b

2B2
1b(1 + α)

and

γ4 =
2µ(1 + α)− (3α + 1)

(1 + α)2
. (11)

Further, if γ1 ≤ µ ≤ γ3, then

|a3 − µa22|+
(1 + α)

2B2
1b

[

B1 −B2 + γ4B
2
1b
]

| a22 | ≤
B1b

2(1 + α)
.
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Further, if γ3 ≤ µ ≤ γ2, then

|a3 − µa22|+
(1 + α)

2B2
1b

[

B1 +B2 + γ4B
2
1b
]

| a22 | ≤
B1b

2(1 + α)
.

Each of these results are sharp.

Further, we have the following corollary.

Corollary 9. Let b ∈ C \ {0} and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 6= 0. If f(z) given by (1) belongs to Mα(b, φ), then

|a3 − µa22| ≤
B1 | b |

2(1 + α)
max

{

1;
B2

B1
+

(

3α+ 1

(1 + α)2
+

2

(1 + α)
µ

)

B1b

}

.

The result is sharp.

For the special case b = 1 in Corollaries 8 and 9, the functionMα(b, φ) given
by (10) has the form Mα(1, φ) hence, we can deduce the following results.

Example 10. Let φ(z) = 1+B1z+B2z
2 + · · · with B1 > 0. If f(z) given

by (1) belongs to Mα(1, φ), then

|a3 − µa22| ≤



























B1

2(1+α)

(

B2

B1
− γ4B1

)

if µ ≤ δ1,

B1

2(1+α) if δ1 ≤ µ ≤ δ2,

− B1

2(1+α)

(

B2

B1
− γ4B1

)

if µ ≥ δ2,

where γ4 is given by (11) and

δ1 =
(B2 −B1) (1 + α)2 + (3α + 1)B2

1

2B2
1(1 + α)

,

δ2 =
(B2 +B1) (1 + α)2 + (3α + 1)B2

1

2B2
1(1 + α)

and

δ3 =
B2 (1 + α)2 + (3α+ 1)B2

1

2B2
1(1 + α)

.
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Further, if δ1 ≤ µ ≤ δ3, then

|a3 − µa22|+
(1 + α)

2B2
1

[

B1 −B2 + γ4B
2
1

]

| a22 |≤
B1

2(1 + α)
.

Further, if δ3 ≤ µ ≤ δ2, then

|a3 − µa22|+
(1 + α)

2B2
1

[

B1 +B2 + γ4B
2
1

]

| a22 |≤
B1

2(1 + α)
.

The results are sharp.

Example 11. Let φ(z) = 1+B1z+B2z
2 + · · · with B1 6= 0. If f(z) given

by (1) belongs to Mα(1, φ), then

|a3 − µa22| ≤
B1

2(1 + α)
max

{

1;
B2

B1
+

(

3α+ 1

(1 + α)2
+

2

(1 + α)
µ

)

B1

}

.

Remark 12. For the special case α = 0, Theorems 4 and 5 represent
results, similar to these obtained by Seoudy and Aouf [19, Theorem 3 and
Theorem 1].

Remark 13. For the special case α = 1, Theorems 4 and 5 represent
results, similar to these obtained by Seoudy and Aouf [19, Theorem 4 and
Theorem 2].

Remark 14. For α = 0and q → 1−, Theorem 5 provides similar results
to those recently obtained by Ravichandran et al. [17, Theorem 4.1].

Remark 15. For α = 0and q → 1−, Theorem 4 gives similar results to
those recently obtained by Seoudy and Aouf [19, Corollary 3].

Remark 16. For α = 1 and q → 1−, Theorems 4 and 5 correspond to the
results recently obtained by Seoudy and Aouf [19, Corollary 2 and Corollary 4].
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Remark 17. For α = 0, q → 1− and α = 1, q → 1−, Theorems 4 and 5
correspond to the results obtained by Ma and Minda [8] for the known classes
of starlike and convex functions which were mentioned as S(φ) and C(φ) re-
spectively.

3. Applications to Analytic Functions Defined by using Fractional
Calculus Operators and Convolution

Definition 18. Let f(z) be analytic in a simply connected region of the
z-plane containing the origin. The fractional derivative for f(z) of order ρ is
defined by

Dρ
zf(z) =

1

Γ(1− ρ)

d

dz

∫ z

0

f(ζ)

(z − ζ)ρ
dζ (0 ≤ ρ < 1),

where f(z) is constrained, and the multiplicity of (z − ζ)−ρ is removed by
requiring that log(z − ζ) is real for z − ζ > 0.

With the help of Definition 18 and its known extensions involving fractional
derivatives and fractional integrals, Owa and Srivatsava [12] introduced the
operator Ωρ : A → A defined by

(Ωρf)(z) = Γ(2− ρ)zρDρ
zf(z)

= z +

∞
∑

k=2

Γ (k + 1) Γ (2− ρ)

Γ (k + 1− ρ)
akz

k, (ρ 6= 2, 3, 4 . . . ).
(12)

The class Mρ
α(q, b, φ) consists of functions f ∈ A for which Ωρf ∈ Mα(q, b, φ),

and note that the class Mρ
α(q, b, φ) is a special case of the class Mg

α(q, b, φ)
when

g(z) = z +

∞
∑

k=2

Γ (k + 1)Γ (2− ρ)

Γ (k + 1− ρ)
zk. (13)

For f(z) given by (1) and g(z) given by g(z) = z +
∑∞

k=2 gkz
k, the convolution

of f(z) and g(z) is defined by

(f ∗ g)(z) = z +

∞
∑

k=2

akgkz
k.
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Since f ∈ Mg
α(q, b, φ) if and only if f ∗g ∈ Mα(q, b, φ), we obtain the coef-

ficient estimates for functions in the class Mg
α(q, b, φ), from the corresponding

estimates for functions in the class Mα(q, b, φ).

Applying Theorem 4 for the function (f ∗g)(z), we get the following theorem
after choosing the suitable parameter µ:

Theorem 19. Let 0 < q < 1, b ∈ C \ {0} and φ(z) = 1+B1z+B2z
2 + · · ·

with B1 > 0. If f(z) given by (1) belongs to Mg
α(q, b, φ), then

|a3 − µa22| ≤



























B1|b|
g3α1

(

B2

B1
− η3B1b

)

if µ ≤ η1,

B1|b|
g3α1

if η1 ≤ µ ≤ η2,

−B1|b|
g3α1

(

B2

B1
− η3B1b

)

if µ ≥ η2,

where α1, α2 and α3 are denoted by (3), (4) and (5), and

η1 =
(B2 −B1)α3 − α2B

2
1b

B2
1g3bα1

g22 ,

η2 =
(B2 +B1)α3 − α2B

2
1b

B2
1g3bα1

g22

and

η3 =
α2 + µα1

α3g22
g3.

The result is sharp.

When g corresponds to the Owa-Srivastava operator given in (12), we have

g2 :=
Γ(3)Γ(2 − ρ)

Γ(3− ρ)
=

2

2− ρ
(14)

and

g3 :=
Γ(4)Γ(2 − ρ)

Γ(4− ρ)
=

6

(2− ρ)(3 − ρ)
. (15)

Combining (14) and (15), Theorem 19 is reduced as follows.



256 C. Ramachandran, L. Vanitha, S. Owa

Theorem 20. Let 0 < q < 1, b ∈ C \ {0} and φ(z) = 1+B1z+B2z
2 + · · ·

with B1 > 0. If f(z) given by (1) belongs to Mg
α(q, b, φ), then

|a3 − µa22| ≤



























(2−ρ)(3−ρ)B1 |b|
6α1

(

B2

B1
− λ3B1b

)

if µ ≤ λ1,

(2−ρ)(3−ρ)B1 |b|
6α1

if λ1 ≤ µ ≤ λ2,

−(2−ρ)(3−ρ)B1 |b|
6α1

(

B2

B1
− λ3B1b

)

if µ ≥ λ2,

where α1, α2 and α3 are represented by (3), (4) and (5), and

λ1 =

(

2(3 − ρ)

3(2 − ρ)

)

(B2 −B1)α3 − α2B
2
1b

B2
1bα1

,

λ2 =

(

2(3 − ρ)

3(2 − ρ)

)

(B2 +B1)α3 − α2B
2
1b

B2
1bα1

and

λ3 =

(

2(3 − ρ)

3(2 − ρ)

)

α2 + µα1

α3
. (16)

The result is sharp.

For the special case b = 1 and limq→1− , the function Mα(q, b, φ) given by
Definition 1 has the form respectively denoted by (9) and (10). Consequently,
from Theorems 19 and 20, we can deduce respectively the following corollaries
which gave the sharp upper bound for the function mentioned above.

Corollary 21. Let 0 < q < 1 and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. If f(z) given by (1) belongs to Mg
α(q, 1, φ), then

|a3 − µa22| ≤



























B1

g3α1

(

B2

B1
− α2+µα1

α3g
2
2

B1g3

)

if µ ≤ µ1,

B1

g3α1
if µ1 ≤ µ ≤ µ2,

B1

g3α1

(

B2

B1
− α2+µα1

α3g
2
2

B1g3

)

if µ ≥ µ2,

where α1, α2 and α3 are defined by (3), (4) and (5), and

µ1 =
(B2 −B1)α3 − α2B

2
1

B2
1g3α1

g22
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and

µ2 =
(B2 +B1)α3 − α2B

2
1

B2
1g3α1

g22 .

The result is sharp.

Corollary 22. Let 0 < q < 1 and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. If f(z) given by (1) belongs to Mg
α(q, 1, φ), then

|a3 − µa22| ≤



























(2−ρ)(3−ρ)B1

6α1

(

B2

B1
− λ3B1

)

if µ ≤ ζ1,

(2−ρ)(3−ρ)B1

6α1
if ζ1 ≤ µ ≤ ζ2,

−(2−ρ)(3−ρ)B1

6α1

(

B2

B1
− λ3B1

)

if µ ≥ ζ2,

where α1, α2, α3 and λ3 are represented by (3), (4), (5), and (16), and

ζ1 =

(

2(3 − ρ)

3(2 − ρ)

)

(B2 −B1)α3 − α2B
2
1

B2
1bα1

and

ζ2 =

(

2(3 − ρ)

3(2 − ρ)

)

(B2 +B1)α3 − α2B
2
1

B2
1bα1

.

The result is sharp.

Corollary 23. Let b ∈ C \ {0} and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. If f(z) given by (1) belongs to Mα(b, φ), then

|a3 − µa22| ≤



























B1|b|
2g3(1+α)

(

B2

B1
− γ4

g2
2

B1bg3

)

if µ ≤ ν1,

B1|b|
2g3(1+α) if ν1 ≤ µ ≤ ν2,

− B1|b|
2g3(1+α)

(

B2

B1
− γ4

g2
2

B1bg3

)

if µ ≥ ν2,

where γ4 is given by (11) and

ν1 =
(B2 −B1) (1 + α)2 + (3α + 1)B2

1b

2g3B2
1b(1 + α)

g22

and

ν2 =
(B2 +B1) (1 + α)2 + (3α + 1)B2

1b

2g3B
2
1b(1 + α)

g22 .
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Corollary 24. Let b ∈ C \ {0} and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. If f(z) given by (1) belongs to Mg
α(b, φ), then

|a3 − µa22| ≤



























ρ3

(

B2

B1
− 3(2−ρ)γ4

2(3−ρ) B1b
)

if µ ≤ ρ1,

ρ3 if ρ1 ≤ µ ≤ ρ2,

−ρ3

(

B2

B1
− 3(2−ρ)γ4

2(3−ρ) B1b
)

if µ ≥ ρ2,

where γ4 is given by (11) and

ρ1 =

(

2(3− ρ)

3(2− ρ)

)

(B2 −B1) (1 + α)2 + 2(3α + 1)B2
1b

B2
1b(1 + α)

,

ρ2 =

(

2(3− ρ)

3(2− ρ)

)

(B2 +B1) (1 + α)2 + 2(3α + 1)B2
1b

B2
1b(1 + α)

and

ρ3 =
(2− ρ)(3 − ρ)B1 | b |

12(1 + α)

The result is sharp.

For the special case b = 1 in Corollaries 23 and 24, we can deduce the
following results.

Example 25. Let b ∈ C \ {0} and φ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0 and B2 ≥ 0. If f(z) given by (1) belongs to Mα(1, φ), then

|a3 − µa22| ≤



























(2−ρ)(3−ρ)B1

12(1+α)

(

B2

B1
− 3(2−ρ)γ4

2(3−ρ) B1

)

if µ ≤ τ1,

(2−ρ)(3−ρ)B1

12(1+α) if τ1 ≤ µ ≤ τ2,

−(2−ρ)(3−ρ)B1

12(1+α)

(

B2

B1
− 3(2−ρ)γ4

2(3−ρ) B1

)

if µ ≥ τ2,

where γ4 is given by (11) and

τ1 =
(B2 −B1) (1 + α)2 + (3α + 1)B2

1

2g3B2
1(1 + α)

g22
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and

τ2 =
(B2 +B1) (1 + α)2 + (3α+ 1)B2

1

2g3B2
1(1 + α)

g22 .

The results are sharp.

Example 26. Let φ(z) = 1+B1z+B2z
2 + · · · with B1 > 0. If f(z) given

by (1) belongs to Mg
α(1, φ), then

|a3 − µa22| ≤



























(2−ρ)(3−ρ)B1

12(1+α)

(

B2

B1
− 3(2−ρ)

2(3−ρ)γ4B1

)

if µ ≤ ω1,

(2−ρ)(3−ρ)B1

12(1+α) if ω1 ≤ µ ≤ ω2,

−(2−ρ)(3−ρ)B1

12(1+α)

(

B2

B1
− 3(2−ρ)

2(3−ρ)γ4B1

)

if µ ≥ ω2,

where γ4 is given by (11) and

ω1 =

(

2(3 − ρ)

3(2 − ρ)

)

(B2 −B1) (1 + α)2 + 2(3α + 1)B2
1

B2
1(1 + α)

and

ω2 =

(

2(3− ρ)

3(2− ρ)

)

(B2 +B1) (1 + α)2 + 2(3α + 1)B2
1

B2
1b(1 + α)

.

The result is sharp.
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