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Abstract: The aim of this paper is to study dynamical properties of an ax-
ially vibrating uniform nanorod. This analysis is performed by describing the
model as an infinite-dimensional state-space system, with bounded control op-
erator. In the absence of control forces, the system with homogeneous boundary
conditions generates a strongly continuous semigroup. It is proved that the as-
sociated eigenfunctions form a Riesz basis for the energy space. It is shown that
axial vibration of nanorod is stable phenomena but not exponentially stable. A
necessary and sufficient condition for the approximate controllability is given.
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1. Introduction

With the rapid development of nanotechnology, miniaturized structures with
nanoscale features can be precisely designed, manufactured and applied in the
so-called Nano-Electro-Mechanical Systems (NEMS) [9, 7]. Since, Carbon Nano
Tubes (CNTs) and nonlocal elastic beams with nanoscale thickness (nanorod)
have good electrical properties and high mechanical strength, they are most
popular in NEMS [11, 12]. Moreover, they are of significance for use in advanced
catalysts, adsorbents, composite materials and ceramics [2].
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Elastic properties of CNTs can be determined by using axial vibration ex-
periments. Although flexural experiments are used when determining Youngs
modulus, axial vibrations can also be used. As stated by Fonoberov and Ba-
landin [6], pure axial vibration mode can also be observed. Axial external
forces that may act on nanorods leads to axial vibration of them [1]. Due to
the vast applications of nanorods, controllability and stability analysis of an
axially vibrating nanorod is crucial for many of their future uses.

The rest of this paper is organized as follows. In Section 2, the axial vibra-
tion of the nanorods is described by a fourth order partial differential equation
with mixed derivative. The differential equation is formulated as an abstract
differential equation in Section 3. The close analytical solution of the equation
is achieved by using semigroup theory. It is shown that the infinitesimal gener-
ator of the semigroup is a Riesz-spectral operator. Moreover, stability of axial
vibration of nanorod is investigated. In Section 4, a necessary and sufficient
condition for the approximate controllability is obtained by using the properties
of Riesz-spectral operators.

2. Problem Formulation

Consider the nanorod in the physical domain determined by a thin elastic rod of
length l. Let Ω = (0, l) be a bounded open set in R, T > 0 and D = Ω× (0, T ).
The PDE describing the axial vibration of a nanorod over domain D can be
expressed as follows [1, 13]:

EA
∂2

∂x2
u(x, t) + b(x)f(t) = (1− (e0a)

2 ∂2

∂x2
)m

∂2

∂t2
u(x, t), (1)

where u(x, t) is axial displacement, E is the conventional Young’s modulus, A
is the cross-sectional area of the nanorod, m is the mass per unit length, a is
an internal characteristic length, e0 is a constant, b(x) represents the shaping
function around the control point x0 and f(t) axially distributed external con-
trol force. The equation (1) is obtained by using nonlocal continuum theory
of Eringen. For more information regarding the established theory by Eringen,
see [4, 5]. Without loss of generality, A = E = 1 is assumed throughout this
paper for simplicity.

The initial and boundary conditions are:



DYNAMICAL ANALYSIS OF... 265

u(x, 0) = f1(x) (2)

∂

∂t
u(x, 0) = f2(x) (3)

u(0, t) = 0 (4)

u(l, t) = 0, (5)

where f1(x) and f2(x) are given real valued functions.

3. Semigroup Formulation

The system of equations (1)-(5) can be transformed to an abstract differential
equation. As state space we choose the energy space H, which is the Hilbert
space H2(Ω) ∩H1

0 (Ω)×H2(Ω) ∩H1
0 (Ω) with the inner product

〈(

u1
u2

)

,

(

w1

w2

)〉

e

=
m

2

∫ l

0
(e0a)

2 d
2u1

dx2
d2w1

dx2
+ J(u2)J(w2) dx, (6)

where J = m(1− (e0a)
2 d2

dx2 ).
On this state space, it is easy to show that J is an bounded and invertible

operator. We write (1)-(5) in the following abstract form:






















d

dt

(

u

ut

)

= A

(

u

ut

)

+Bf

(

u

ut

)

|t=0 =

(

f1

f2

)

,

(7)

with ut =
du
dt
, B =

(

0
J−1(b(x))

)

and A is given by

A

(

u1
u2

)

=

(

u2

J−1(d
2u1

dx2 )

)

, (8)

where J−1 denotes the inverse of the operator J and

D(A) = H2(Ω) ∩H1
0 (Ω)×H2(Ω) ∩H1

0 (Ω). (9)

Definition 1. Let A be a closed linear operator on the Hilbert space, Z,
with simple eigenvalues {γn, n ≥ 1} and its corresponding eigenvalues {φn, n ≥
1} form a Riesz-basis in Z. If the closure of {γn, n ≥ 1} is totally disconnected,
then A is called Riesz-spectral operator.
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The properties of Riesz-spectral operators have been widely studied on
mathematical systems theory (for example see [3, 8, 15] and references therein).
In the following, we will prove that A is Riesz-spectral operator.

Theorem 2. The operator A as defined in (8) and (9) is the infinitesimal
generator of a strongly continuous semigroup on H.

Proof. It is enough to show that the operator A is a Riesz-spectral operator,
the result follows from Theorem 2.3.5 in [3]. By using standard arguments (see
[3], Theorem A.3.46), it can be shown that the operator A is closed and densely
defined on H. Let Λ denotes the set of eigenvalues of A. It suffices to show
that the eigenvalues of A are simple, totally disconnected, satisfy

sup
λ∈Λ

Re(λ) < ∞, (10)

and its eigenfunctions form Riesz basis. Thus, we begin by calculating the
eigenvalues and eigenfunctions of A. From (8) we have that

A

(

u1
u2

)

= λ

(

u1
u2

)

⇔
{

u2 = λu1

J−1(d
2u1

dx2 ) = λu2.
(11)

Therefore, u2 = λu1 and

J−1(
d2u1

dx2
) = λ2u1 ⇔

d2u1

dx2
= J(λ2u1), (12)

which is equivalent to
{

u1 ∈ H1
0 (Ω) ∩H2(Ω),

d2u1

dx2 = mλ2(u1 − (e0a)
2 d2u1

dx2 ).
(13)

We want to find all solutions of (13). Therefore, we first obtain a set of solutions.
It is easily seen that ϕn = sin(nπx

l
) lies in H2(Ω) ∩ H1

0 (Ω). Furthermore, it
satisfies (13) if and only if λn satisfies

λ2
n = − (nπ

l
)2

m(1 + (e0a)2(
nπ
l
)2)

. (14)

The solution of above equation is denoted as follows

λ+n =

√

(nπ
l
)2

m(1 + (e0a)2(
nπ
l
)2)

i, (15)

λ−n = −
√

(nπ
l
)2

m(1 + (e0a)2(
nπ
l
)2)

i. (16)
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For λ±n defined by (15) and (16), it is easy to see that

ϕ±n(x) =

(

sin(nπx
l
)

λ±n sin(
nπx
l
)

)

, (17)

lies in the domain of A, and satisfies Aϕ±n = λ±nϕ±n. Hence, ϕ±n is an
eigenfunction of A.

Furthermore,

〈ϕ−n, ϕ+n〉e = ‖ϕ−n‖2 = ‖ϕ+n‖2 =
ml

4

[

(e0a)
2(
nπ

l
)4 +m(

nπ

l
)2 +m(e0a)

2(
nπ

l
)4
]

. (18)

Lemma 3. The normalized set of eigenfunctions
{ ϕ+n

‖ϕ+n‖ ,
ϕ
−n

‖ϕ
−n‖ , n ∈ N} forms a Riesz basis of H.

Proof. It is well-known that { 1√
µn

sin(nπx
l
), n ∈ N}, with

µn =
l

2
(
nπ

l
)4 (19)

forms an orthonormal basis of H2(Ω).
Let w = (w1

w2
) ∈ H. By the above, there exist {c1,n}n∈N and {c2,n}n∈N in ℓ2

such that

w1(x) =

∞
∑

n=1

c1,n
1√
µn

sin(
nπx

l
), (20)

w2(x) =

∞
∑

n=1

c2,n
1√
µn

sin(
nπx

l
). (21)

Using the normalized eigenfunctions, (20), (21) can be written in the fol-
lowing form

w =
∞
∑

n=1

d+n
ϕ+n

‖ϕ+n‖
+ d−n

ϕ−n

‖ϕ−n‖
, (22)

with
{

d+n

‖ϕ+n‖ +
d
−n

‖ϕ
−n‖ =

c1,n√
µn

λ+n
d+n

‖ϕ+n‖ + λ−n
d
−n

‖ϕ
−n‖ =

c2,n√
µn

.
(23)
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We write (23) in a matrix notation as follows
(

c1,n
c2,n

)

=





√
µn

‖ϕ+n‖
√
µn

‖ϕ
−n‖√

µnλ+n

‖ϕ+n‖
√
µnλ−n

‖ϕ
−n‖





(

d+n

d−n

)

. (24)

The set { ϕ+n

‖ϕ+n‖ ,
ϕ
−n

‖ϕ
−n‖ , n ∈ N} forms a Riesz basis of H if and only if

{d±n}n ∈ ℓ2 whenever {c±n}n ∈ ℓ2. This holds if and only if the matrix in (24)
is (uniformly) bounded and (uniformly) boundedly invertible. Since λ+n 6= λ−n,
we have that for all n the matrix is invertible. Using (15), (16), (18), and (19),
it is easily seen that the coefficients and determinant of the matrix in (24)
are (uniformly) bounded and away from zero, which implies that the matrix is
uniformly bounded and boundedly invertible.

Since the normalized eigenfunctions { ϕ+n

‖ϕ+n‖ ,
ϕ
−n

‖ϕ
−n‖ , n ∈ N} form a Riesz

basis of H, we have that they are all the eigenfunctions. Using (15) and (16), it
is clear that eigenvalues of A are simple, totally disconnected and satisfy (10).
This finishes the proof.

Corollary 4. Relations (15) and (16) show that eigenvalues of A have
zero real part. Thus, axial vibration of a nanorod is stable phenomena but not
exponentially stable.

Knowing that the A is Riesz-spectral operator, it is easy to derive the
formula for the C0-semigroup, and thus for the exact solution of (7).

4. Approximate Controllability

Consider the PDE (1) with initial and homogeneous boundary conditions as
defined in equations (2)-(5). We assume that the shaping function b(x) around
the control point x0 is as follows

b(x) =
1

2ǫ
χ[x0−ǫ,x0+ǫ], (25)

for some ǫ > 0,where χJ denotes the characteristic function of a set J . If ǫ be
close to zero, which we may assume, then b(x) is approximation of Dirac delta
distribution around x0. This form is used in practical engineering applications[10,
14].

Theorem 5. Consider the system (1)-(5), where b(x) is defined by (25).
The system is approximately controllable if and only if the following condition
is satisfied:
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sin(
nπx0

l
) sin(

nπǫ

l
) 6= 0, ∀n ∈ N. (26)

Proof. Consider the abstract formulation of system (1)-(5) as defined in
(7). Using [3] Theorem 4.2.3, shows that (7) is approximately controllable if
and only if for all n ∈ N

∫ x0+ǫ

x0−ǫ

sin(
nπx

l
) 6= 0. (27)

The proof is now completed by direct calculation of integral (27).

5. Conclusion

The axial vibration of the nanorod is formulated as a first order differential
equation. The closed analytical form solution of this equation is obtained by
using semigroup theory. It is proved that the axial vibration of the nanorod
is stable phenomena but not exponentially stable. Furthermore, it is proved
that the axial vibration of the nanorod is approximately controllable under an
algebraic condition.
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