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Abstract: In this work we prove that the effect of the memory together with
the frictional damping produces stabilization for the system of two identical
laminated beams of uniform density taking into account that an adhesive of
small thickness is bonding the two beams and produce the interfacial slip. It is
assumed that the thickness of the adhesive is small enough so that the contri-
bution of its mass to the kinetic energy of the entire beam may be ignored.
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1. Introduction

We consider the initial boundary value problem associated to the damped quasi-
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linear hyperbolic equation

utt −∆u−M

(
∫

Ω
|∇u|2dx

)

∆utt + ut = 0, (1)

in the cylinder Q = Ω×]0, T [, T > 0 is a real number, Ω is a smooth bounded
domain in Rn, M is a real valued function with M(λ) > ρ > 0, ∀λ ≥ 0 and
some ρ > 0. The equation (1) without the dissipative term ut and M(λ) ≡ 1
arises in the study of the extensional vibrations of thin rods, see [9]. For the
equation withM(λ) = λ0, with λ0 =

∫

Ω φ2(x)dx, where φ is the torsion function
arises of the torsional vibrations of thin rods, see [5]. The function M(λ) in (1)
has its motivation in mathematical description of the vibrations of an elastic
stretched string, that is, the equation

utt −∆u−M

(
∫

Ω
|∇u|2dx

)

∆u = 0,

what for (M(λ) ≥ ρ > 0) and was studied [10, 7, 4]. The situation (M(λ) ≥ 0)
was treated by [1, 2, 6, 3], among others. The equation

utt −∆u−M

(
∫

Ω
|∇u|2dx

)

∆utt = f,

with M(λ) ≥ ρ > 0 was studied in [8] where the existence and uniqueness of
global classical solutions were provided. In this work we prove that the global
classical solutions of equation (1) decay exponentially using the same technique
as in [11].

2. Existence of Solution

Let (wj)j∈N be a system of eigenfunctions of −∆ which is defined on H1
0 (Ω) ∩

H2(Ω). We denote by V ≡ V (Ω) the set of all finite combinations of (wj)j∈N.
Putting (u, v) =

∫

Ω u(x)v(x)dx and (u, v)m = ((−∆)mu, v),m = 1, 2, ..., then
(·, ·)m is a inner product on V . We put Vm ≡ Vm(Ω) as the closure of V by the
topology of norm | · |2m = (·, ·)m. Then we have that

H1
0 (Ω) ≡ V1 ⊃ V2 ⊃ ... ⊃ Vm ⊃ ... ,

Vm ⊂ Hm(Ω),m = 1, 2, ..., and the norm |·|m is equivalent in Vm to the standard
norm of Hm(Ω) and all the above injections are compact.

Consider the following hypotheses about the real valued function M :
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(H.1) M ∈ C1[0,∞)[, and there exist constants α > 0 and ρ > 0 that
verify M(λ) ≥ αλ1/2 + ρ, ∀λ ∈ [0,∞[,

(H.2) |M ′(λ)|λ1/2 ≤ β(λ)M(λ) where β ∈ C0[0,∞[, β(λ) ≥ 0, λ ≥ 0.

Theorem 1. Under the hypotheses (H.1), (H.2) there exists a unique
solution of the initial boundary value problem associated to the equation (1),
with initial data u0, u1 ∈ Vm,m ≥ 2, in the class u ∈ C2(0, T ;Vm), that verifies

utt −∆u−M

(
∫

Ω
|∇u|2dx

)

∆utt + ut = 0 in Q.

Proof. The proof can be made by the Faedo-Galerkin method and compact-
ness argument with same idea as in [8].

3. Asymptotic Behavior

In this section we use the same technique as in [11] to prove the exponential
stability of the solution. In the sequel we have two lemmas.

Lemma 2. The energy E(t) = |ut|
2 + ‖u‖2 associated the equation (1)

satisfies

E′(t) ≤ −|ut|
2 + α2C2

1‖u‖
2, (2)

where C1 is a positive constant.

Proof. Taking the derivative of the energy E(t) with respect to t we obtain:

E′(t) = 2(utt, ut) + 2((u, ut)) = 2(utt, ut)− 2(∆u, ut)

= 2(utt −∆u, ut) = 2(M(‖u‖2)∆utt − ut, ut)

= −2|ut|
2 − 2M(‖u‖2)(−∆utt, ut).

By (H.1) we have M(‖u‖2) ≥ α‖u‖2, then −M(‖u‖2) ≤ −α‖u‖2. Thus,

E′(t) ≤ −2|ut|
2 − 2α‖u‖(−∆utt, ut)

≤ −2|ut|
2 + 2α‖u‖|∆utt||ut|

≤ −2|ut|
2 + α2C2

1‖u‖
2 + |ut|

2.
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That is,

E′(t) ≤ −|ut|
2 + α2C2

1‖u‖
2,

where C1 > 0 is a constant such that |∆utt| ≤ C1.

Lemma 3. Consider G(t) = (ut, u), then

G′(t) ≤
3

2
|ut|

2 + (αC0C1 +
C2
0

2
− 1)‖u‖2, (3)

where C0 is a constant from Poincarè’s inequality.

Proof. Taking the derivative of G(t) with respect to t we obtain:

G′(t) = (utt, u) + |ut|
2

= (∆u+M(‖u‖2)∆utt − ut, u) + |ut|
2

= ‖u‖2 −M(‖u‖2)(−∆utt, u)− (ut, u) + |ut|
2.

By (H.1), we have

−M(‖u‖2)(−∆utt, u) ≤ αC0C1‖u‖
2,

where C0 is a constant of Poincarè’s inequality.

Now

(ut, u) ≤
1

2
|ut|

2 +
1

2
|u|2 ≤

1

2
|ut|

2 +
C2
0

2
‖u‖2.

Hence

G′(t) ≤
3

2
|ut|

2 + (αC0C1 +
C2
0

2
− 1)‖u‖2.

Now we are in position of to prove our principal result.

Theorem 4. Let u0, u1 ∈ H1
0 (Ω) ∩ H2(Ω), then for each ε > 0, small

enough, there are constants γ(ε) > 0 and C(ε) > 0 such that the solution of
the equation (1) satisfies

|ut|
2 + ‖u‖2 ≤ C(ε)e−γ(s)t, ∀t ≥ 0.
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Proof. Consider a small perturbation of the energy functional, given by

Eε(t) = E(t) + εG(t).

For ε > 0 small enough, that is

ε < min

{

2

3
,

2α2C2
1

2− 2αC0C1 − C2
0

,
2

C2
0

}

,

we have
Eε(t) = |ut|

2 + ‖u‖2 + ε(ut, u)

≤ |ut|
2 + ‖u‖2 +

ε

2
|ut|

2 +
εC2

0

2
‖u‖2.

So,

Eε(t) ≤ (1 +
ε

2
)|ut|

2 + (1 +
εC2

0

2
)‖u‖2.

Thus,

Eε(t) ≤ a(ε)E(t), (4)

where

a(ε) = max

{

1 +
ε

2
, 1 +

εC2
0

2

}

> 0.

Now,

E′
ε(t) = E′(t) + εG′(t)

≤ −|ut|
2 + α2C2

1‖u‖
2 +

3ε

2
|ut|

2 + ε

(

αC0C1 +
C2
0

2
− 1

)

‖u‖2

= (
3ε

2
− 1)|u|2 +

[

α2C2
1 + ε

(

αC0C1 +
C2
0

2
− 1

)]

‖u‖2.

Then,

E′
ε(t) ≤ b(ε)E(t), (5)

where

b(ε) = max

{

3ε

2
− 1, α2C2

1 + ε

(

αC0C1 +
C2
0

2
− 1

)}

and b(ε) < 0 by the hypothesis about ε.

Multiplying (4) and (5) by −b(ε) and a(ε) respectively, and summing, we
obtain

a(ε)E′
ε(t)− b(ε)Eε(t) ≤ 0.
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Hence,
Eε(t) ≤ Eε(0)e

−γ(s)t, ∀t ≥ 0, (6)

where γ(ε) = −
b(ε)

a(ε)
> 0.

Now,
Eε(t) = |ut|

2 + ‖u‖2 + ε(ut, u)

≥ (1−
ε

2
)|ut|

2 + (1−
εC2

0

2
)‖u‖2

≥ β(ε)E(t),

where β(ε) = min

{

1−
ε

2
, 1−

εC2
0

2

}

.

Thus, by (6) we have

E(t) ≤ β−1(ε)Eε(t) ≤ β−1(ε)Eε(0)e
−γ(s)t, ∀t ≥ 0.

Therefore,
E(t) ≤ C(ε)e−γ(s)t, ∀t ≥ 0,

with C(ε) = β−1(ε)Es(0), that is

|ut|
2 + ‖u‖2 ≤ C(ε)e−γ(s)t, ∀t ≥ 0.
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