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1. Introduction

Degenerating and singular elliptic equations are one of the most significant
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topics of the modern theory of partial differential equations. The necessity
of study of such equations is stipulated by their numerical applications in gas
dynamics, theory of shells, theory of elasticity, continuum mechanics, etc. M.V.
Keldysh’s work [5], where the cases when a characteristic part of the boundary
of the domain may become free from boundary conditions, is one of the first
papers in this field.

In the last ten years there is a great interest to degenerating and singular
equations, including the equations containing the Bessel differential operator

Bn =
∂2

∂x2n
+

γ

xn

∂

∂xn
, γ > 0.

Note that in these directions there exist investigations by I.A. Kiprianov [7],
[8], I.A. Kiprianov, V.I. Kononenko [10], I.A. Kiprianov and M.I. Klyuchanchev
[9], F.G. Mukhlisov [12], F.G. Mukhlisov, A.Sh. Khismatullin [13], A.Sh. Khus-
matullin [6].

The mentioned equations are often encountered in applications, for exam-
ple in axial symmetry problems of continuum mechanics. One of the intensely
developing directions is the investigation of elliptic equations with Bessel oper-
ator that in 1967 were called by I.A. Kiprianov Bn-elliptic. The first papers on
Bn-elliptic equations are related to the equations of the form

∆Bnu(x) =

n−1∑

i=1

∂2u(x)

∂x2i
+Bnu(x) = 0.

I.A. Kiprianov and his colleagues extensively studied the operator ∆Bn and
some of its generalizations.

I.A. Kiprianov showed that the volume potential

u(x) =

∫

Rn
+

|y|2−n−γT yf(x)(y′)γdy

is the solution of the Bn-elliptic equation

∆Bnu(x) = f(x),

where

T yf(x) = Cγ,n

∫ π

0
f
(
x′ − y′, (x2n − 2xnyn cos β + y2n)

1

2

)
sinγ−1 β dβ.
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The study of wave propagation in infinite domains has a great value in
physics and mechanics. The long-range wave propagation in atmosphere, sound
propagation in sea, waves in pipes belong to such ones. These phenomena
reduce to boundary value problems in cylindrical domains for the Helmholts
equation. There is a wide range of references devoted to different boundary
value problems for partial equations in laminated media.

For distinguishing physically interesting solutions of boundary value prob-
lems for elliptic equations in infinite domains with a spectral parameter when
this parameter is a point of the continuous spectrum of the problem, three
methods are used, more exactly – the limit absorption principle, the limit am-
plitude principle and the Zommerfeld radiation condition. For brevity, these
principles and the Zommerfeld condition are called radiation principles.

2. Main results

Denote by Rm(y), m–dimensional Euclidean space with the point y = (y1, . . .,
ym), by Rn(x) the same space with the point x = (x1, . . . , xn), R

n
+(x) = {x ∈

Rn(x);x = (x′, xn), xn > 0}, γ > 0.

Let Λ = Rn
+(x)× Ω be a cylindrical domain in Rn

+(x)×Rm(y), where Ω is

a bounded domain in Rm(y) with a smooth boundary ∂Ω, where ∂Ω ∈ C[ 3m2 ].

Consider in Λ the following boundary value problem

(∆Bn + k2)u(k, x, y) = f(x, y), (1)

u(k, x, y)|Γ = 0, (2)

where f(x, y) ∈ C∞
0 (Λ), k2 is a constant number not necessarily real, Γ is the

boundary of the cylinder Λ.

Note that in this direction there exist many investigations of A.N. Tikhonov,
A.A. Samarskii [16], L.A. Murave [14], M.V. Federyuk [2], B.A. Iskenderov, Z.G.
Abbasov, E.Kh. Eyvazov [3], B.A. Iskenderov, A.I. Mekhtieva [4].

Denote by C∞
0 (Λ) the space of infinitely differentiable finite functions whose

support is contained in Λ, by C l(D) the space of functions continuous together
with the derivatives to order l, inclusively in the domain D ⊂ Rn

+ ×Rm.

Definition 1. Let Jmk2 6= 0, then the function u(k, x, y) ∈ C2(Λ)∩C(Λ),
convergent to zero as x → ∞, is called a solution of problem (1)–(2), if it
satisfies equation (1) in the ordinary sense and vanishes on the boundary Γ of
the cylinder Λ.
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In the case when k2 is a point of the continuous spectrum of the problem
(1)–(2), there exist three methods to distinguish physically interesting solutions
of the problem. These are: the limit absorption principle, limit amplitude or
at infinity radiation conditions are imposed on the solution of problem (1)–(2).
We will justify these principles and study the conditions for problem (1)–(2).

We determine the Fourier-Bessel transform as follows:

FBn [f(x)](s) =

∫

Rn
+

f(x) · jγ−1

2

(xn · sn)e−i(x′,s′)xγndx,

where (x′, s′) =
n−1∑
m=1

xm · sm.

Using the property of generalized shift, it is easy to show that

FBn(f ∗ g) = FBn(f) · FBn(g).

Along with the problem (1)–(2), we consider the problem

(∆Bn + k2)G(k, x, y) = δ(x, y), (3)

G(k, x, y)|Γ = 0, (4)

where x, y ∈ Λ, δ(x) is Dirac’s delta-function.

Definition 2. Let Jmk2 6= 0. The decreasing solution of the problem (3)–
(4) as x → ∞ (for every y ∈ Ω) will be called the Green function of problem
(1)–(2).

Theorem 3. ([1]) Let

F (t) =

a∫

0

ϕ(τ)e−tτdτ, a > 0,

where ϕ(τ) is an analytic function regular at the points of the interval 0 < τ ≤ a,

while in the vicinity of the point τ = 0 is representable by the series

ϕ(τ) = τα(a0 + a1τ + · · · ), α > −1.

Then as t → +∞,

F (t) =

∞∑

p=1

Γ(α+ 1)

tα+p
ap−1,

where Γ(α) is Euler’s Gamma-function.
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The following asymptotic estimation of the Hankel functions holds for large
values of the argument and in what follows we will use it ([15]):

H(1,2)
µ (z) =

√
2

πz
e±i(z−πµ

2
−π

4 )(1 +O(z−1)). (5)

As it was noted above, for k2 > 0 for distinguishing physically interesting
solutions of problem (1)–(2) the limit absorption principle is used.

Definition 4. We say that for the problem (1)–(2) the limit absorption
principle holds, if for the solution of this problem converging to zero at infinity,
with the complex parameter k2ε = k2 + iε (ε 6= 0) there exists the limit

u(k, x, y) = lim
ε→0

u(kε, x, y)

uniformly with respect to x, y at every compact from Λ, and u(k, x, y) satisfies
the limit problem.

For constructing the solution of problem (1)–(2) with the complex param-
eter k2ε , we perform the Fourier-Bessel transform with respect to x and get the
following boundary value problem

[∆y + (k2ε − |s|2)]û(kε, x, y) = f̂(s, y),

û(k, x, y)|∂Ω = 0,

where û(kε, x, y) = FBn [u(kε, x, y)](s) is the Fourier-Bessel transform with re-
spect to x, and ∆y is the Laplace operator with respect to the variable y.

Consider the following operator L = −∆y with the domain of definition

D(L) =
{
v : v ∈ C2(Ω) ∩C(Ω), ∆v ∈ L2(Ω), v|∂Ω = 0

}
.

For the operator L it holds the following theorem.

Theorem 5. ([18]) The set of eigenvalues {λℓ} of the operator L is denu-
merable and has no finite limit points, each eigenvalue λℓ has a finite multiplicity
and the least one eigenvalue is prime. The eigenfunctions {ϕℓ(y)} may be cho-
sen as real and orthonormed. Any function from L2(Ω) expands in regularly
convergent Fourier series with respect to {ϕℓ(y)}.
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As it follows from this theorem for eigenvalues of the operator L, we have
the chain of the inequalities:

0 < λ1 ≤ λ2 ≤ . . . ≤ λℓ ≤ . . . , as ℓ → ∞.

As k2ε−|s|2 6= λℓ for any s ∈ Rn and û(kε, x, y) ∈ D(L), then using Theorem
3 for solving problem (1)–(2), we get

û(kε, x, y) = Rk2ε−|s|2 f̂(s, y) =
∞∑

l=1

Cℓ(s)ϕℓ(y)

λℓ − k2ε + |s|2 , (6)

where Rµ is a resolvent of the operator L,

Cℓ(s) =

∫

Ω

f̂(s, y)ϕℓ(y)dy. (7)

Note that λℓ and ϕℓ(y) are independent of s.
Now, the solution of the problem (1)–(2) is determined as the Fourier-Bessel

inverse transform of û(k, x, y),

u(kε, x, y) =

∫

Rn
+

û(kε, s, y)jγ−1

2

(xn · sn)e−i(x′,s′)sγnds

=

∞∑

l=1

ϕℓ(y)

∫

Rn
+

Cℓ(s)jγ−1

2

(xn · sn)e−i(x′,s′)

λℓ − k2ε + |s|2 sγnds. (8)

Here, the term by term integration is valid by the uniform convergence of
series (6) and its derivatives ([11]). Taking (7) into account in (8), we get

u(kε, x, y) =
∞∑

l=1

ϕℓ(y)

∫

Rn
+


fℓ(ξ)

∫

Rn
+

ei(ξ
′,s′)jγ−1

2

(xnsn)jγ−1

2

(ξnsn)

λℓ − k2ε + |s|2 sγnds


 ξγndξ,

(9)
where

fℓ(ξ) =

∫

Ω

f(ξ, y)ϕℓ(y)dy. (10)

Denote

Jℓ(kε, x, ξ)
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= lim
N→∞

∫

|s|≤N

ei(ξ
′−x′,s′)jγ−1

2

(xnsn)jγ−1

2

(ξnsn)

λℓ − k2ε + |s|2 sγnds. (11)

Passing in (11) to spherical coordinates, and taking into account the spher-
ical symmetry (λℓ − k2ε + |s|2)−1, we have:

Jℓ(kε, x, ξ) = lim
N→∞

N∫

0

|s′|n−2



∫

Ω

ei|ξ
′−x′||s′| cos θdω




×




√
N2+|s′|2∫

0

jγ−1

2

(xnsn)jγ−1

2

(ξnsn)

λℓ − k2ε + |s|2 sγndsn


 d|s′|, (12)

where Ωr is a sphere of radius r centered at the origin, θ is an angle between
the directions of the vectors ξ − x and s, while ω̃ is a point of a unit sphere.
Since

∫

Ωr

ei|ξ−x||s|cosθ)dω̃ = (2π)
n−1

2
−1(|ξ − x||s|)1−n−1

2 jn−1

2
−1(|ξ − x||s|), (13)

where jn−1

2
−1(z) is the Bessel function of order n

2 − 1, substituting (13) in (12),
we get

Jℓ(kε, x, ξ) = (2π)
n−3

2 |ξ′ − x′| 1−n
2 lim

N→∞

N∫

0

|s′|n−3

2 jn−3

2

(|ξ − x′||s′|)

×




√
N2+|s′|2∫

0

jγ−1

2

(xnsn)jγ−1

2

(ξnsn)

λℓ − k2ε + |s|2 sγndsn


 d|s′|

= (2π)
n−3

2 |ξ′ − x′| 1−n
2

[
2

γ−1

2 Γ

(
γ + 1

2

)]2
(ξnsn)

1−γ

2

× lim
N→∞

N∫

0




√
N2+|s′|2∫

0

|s′|n−1

2 Jn−3

2

(|ξ − x′||s′|)
Jγ−1

2

(xnsn)Jγ−1

2

(ξnsn)

λℓ − k2ε + |s|2 sndsn


 d|s′|
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= (2π)
n−3

2 |ξ′ − x′| 1−n
2

[
2

γ−1

2 Γ

(
γ + 1

2

)]2
(ξnsn)

1−γ

2 lim
N→∞

N∫

0

r
n+1

2

λℓ − k2ε + r2

×




π
2∫

0

Jn−3

2

(|ξ′ − x′|r sinϕ)Jγ−1

2

(rxn cosϕ)Jγ−1

2

(rξn cosϕ) sin
n−1

2 ϕ cosϕdϕ


 dr.

(14)

The internal integral in (14) is the Sonine second determined integral.
Therefore we have

Jℓ(kε, x, ξ)

= (2π)
n−3

2 2
γ−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)(ξnsn)
1−γ

2 (ξnsn)
γ−1

2 lim
N→∞

N∫

0

rn+γ−3

λℓ − k2ε + r2

×




π∫

0

Jn+γ−2

2

(
√

|ξ′ − x′|2r2 + ξ2nr
2 + x2nr

2 − 2r2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2r2 + ξ2nr
2 + x2nr

2 − 2r2xnξn cosϕ)
n+γ−2

4


 dr

= 2
n+γ−4

2 π
n−3

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

) lim
N→∞

N∫

0

r
n+γ

2
−3

λℓ − k2ε + r2

×




π∫

0

Jn+γ−2

2

(r
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4


 dr.

Let n + γ be an odd number. Then z
n+γ

2
−2Jn+γ

2
−1(z) is an even function.

Therefore,

JlN (kε, x, ξ) = 2
n+γ

2
−3π

n−3

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

) lim
N→∞

N∫

−N

r
n+γ

2
−3

λℓ − k2ε + r2

×




π∫

0

Jn+γ−2

2

(r
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4


 dr.

Expressing the Bessel function by the Hankel function (see [15])

Jν(z) =
1

2

(
H(1)

ν (z) +H(2)
ν (z)

)
, (15)
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we get

JlN (kε, x, ξ) = 2
n+γ

2
−4π

n−3

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

) lim
N→∞

N∫

−N

r
n+γ

2
−3

λℓ − k2ε + r2

×




π∫

0

H
(1)
n+γ−2

2

(r
√
|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin

γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

+

π∫

0

H
(2)
n+γ−2

2

(r
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4


 dr

≡ J
(1)
l (kε, x, ξ) + J

(2)
l (kε, x, ξ). (16)

Taking into account the analyticity of the integrand function in (14) and
asymptotic (15) of the Hankel function as |s| → +∞, applying the residue
theorem and tending N → +∞, we get

J
(1)
l (kε, x, ξ) = 2

n+γ

2
−4π

n−3

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

) lim
N→∞

N∫

−N

r
n+γ

2
−3

λℓ − k2ε + r2

×




π∫

0

H
(1)
n+γ−2

2

(r
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4




= 2
n+γ

2
−4π

n−3

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)

× lim
N→∞

π∫

0

sinγ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

×




N∫

−N

r
n+γ

2
−2H

(1)
n+γ−2

2

(r
√
|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)

λℓ − k2ε + r2
dr


 dϕ

= i2
n+γ

2
−4π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
(
i
√

λℓ − k2ε

)n+γ−6

2
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×
π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

;

J
(2)
l (kε, x, ξ) = −i2

n+γ

2
−4π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
(
−i

√
λℓ − k2ε

)n+γ−6

2

×
π∫

0

H
(2)
n+γ−2

2

(−i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

= −i2
n+γ

2
−4π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
(
i
√

λℓ − k2ε

)n+γ−6

2

×
π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

.

Since (see [15])

H
(2)
n+γ−2

2

(−z) = (−1)
n+γ−2

2 H
(1)
n+γ−2

2

(z),

then from (14)–(16) it follows that

Jℓ(kε, x, ξ) = i2
n+γ

2
−3π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
(
i
√

λℓ − k2ε

)n+γ−6

2

×
π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

. (17)

Proceeding in the same way as above, at even n for Jℓ(kε, x, ξ), we get
formula (7). Substituting (17) in (9), we get

u(kε, x, y) = i2
n+γ

2
−3π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
∞∑

ℓ=1

(
i
√

λℓ − k2ε

)n+γ−6

2

ϕℓ(y)

×
∫

Rn
+

π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4
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× fℓ(ξ)ξndξ. (18)

Now, substituting the value of fℓ(ξ) from (10) in (18) and distinguishing
the function f(x), we get

u(kε, x, y) = i2
n+γ

2
−3π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
∞∑

ℓ=1

(
i
√

λℓ − k2ε

)n+γ−6

2

ϕℓ(y)

×
∫

Rn
+

π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

×
∫

Ω

f(ξ, z)ϕℓ(z)dzξndξ = i2
n+γ

2
−3π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)

×
∫

· · ·
∫

Λ

∞∑

ℓ=1

(
i
√

λℓ − k2ε

)n+γ−6

2

ϕℓ(y)ϕℓ(z)×

×
π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

× f(ξ, z)ϕℓ(z)dΛ.

The function

G(kε, x− ξ, y, z) = i2
n+γ

2
−3π

n−1

2

Γ2
(
γ+1
2

)

Γ
(
γ
2

)
Γ
(
1
2

)
∞∑

ℓ=1

(
i
√

λℓ − k2ε

)n+γ−6

2

ϕℓ(y)ϕℓ(z)

×
π∫

0

H
(1)
n+γ−2

2

(i
√

λℓ − k2ε
√

|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ) sin
γ−1 ϕdϕ

(|ξ′ − x′|2 + ξ2n + x2n − 2xnξn cosϕ)
n+γ−2

4

(19)

is the Green function of problem (1)–(2) with a complex parameter k2ε . Thus,
we proved the following theorem.

Theorem 6. The Green function of problem (1)–(2) is an analytic function

of k, except for the denumerable number of points k = ±λ
1

2

ℓ , ℓ = 1, 2, . . . , being
the branching points and for it expansion (19) does not hold, where λℓ are
eigenvalues of the operator L, ϕℓ(y) are appropriate eigenfunctions.
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From this theorem we have the following statement.

Theorem 7. The solution of problem (1)–(2) with a complex parameter
k2ε is represented in the form

u(kε, x, y) =

∫
· · ·

∫

Λ
G(kε, x− ξ, y, z)f(ξ, z)dΛ, (20)

and this solution is unique, where G(kε, x − ξ, y, z) is determined by formula
(19).

Taking into account the asymptotics (5) as z → ∞ of the functionH
(1)
n+γ

2
−1

(z),

we get that series (19) and its derivatives contained in equation (1), converge
uniformly with respect to ε for |x− ξ| > 0, and therefore passing in (20) and in
its derivatives to limit as ε → 0, we get that u(k, x, y) is the solution of problem
(1)–(2). Thus, we proved the following theorem.

Theorem 8. For the problem (1)–(2) it holds the limit absorption princi-

ple (for n = 1, 2; k = ±λ
1

2

ℓ , l = 1, 2, . . .).
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