FUZZY NUMERICAL RANGE HILBERT OPERATORS WITH
APPLICATIONS IN BEST APPROXIMATION

Abstract

The main purpose of this paper is to introduce the fuzzy numerical range of operator on fuzzy Hilbert space and to study some its properties. Then by applying this concept, we study a version of the problem of the best approximation in fuzzy Hilbert operator spaces.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 29
Issue: 5
Year: 2016

DOI: 10.12732/ijam.v29i5.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] T. Bag and S.K. Samanta, Finite dimentional fuzzy normed linear spaces, J. Fuzzy Math., 11, No 3 (2003), 678-705.
  2. [2] Y.E. Bao, C.X. Wu, Convexity and semicontinuity of fuzzy mappings, Comput. Math. Appl., 51 (2006), 1809-1816.
  3. [3] S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
  4. [4] J. Fang, H. Huang, On the level convergence of sequence of fuzzy numbers, Fuzzy Sets and Systems, 147 (2004), 417-435.
  5. [5] C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992), 239-248.
  6. [6] C. Felbin, The completion of a fuzzy normed linear space, J. Math. Anal. Appl., 174, No 2 (1993), 428-440.
  7. [7] C. Felbin, Finite dimensional normed linear space II, J. Anal., 7 (1999), 117-131.
  8. [8] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Sys- tems, 18 (1986), 31-42.
  9. [9] A. Hasankhani, A. Nazari, M. Saheli, Some properties of fuzzy Hilbert spaces and norm of operators, Iranian Journal of Fuzzy Systems, 7, No 3 (2010), 129-157.
  10. [10] O. Kaleva, S. Seikala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
  11. [11] A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154.
  12. [12] I. Kramosil, J. Michelek, Fuzzy metric and statistical metric spaces, Ky- bernetica, 11 (1975), 326-334.
  13. [13] S.V. Krishna, K.K.M. Sarma, Separation off uzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), 207-217.
  14. [14] Y. Syaua, L. Sugianto, E.S. Lee, A class of semicontinuous fuzzy mappings, Applied Mathematics Letters, 21 (2008), 824-827.
  15. [15] O. Talo, Some properties of limit inferior and limit superior for sequences of fuzzy real numbers, Information Sciences, 279 (2014), 560-568.
  16. [16] S. M. Vaezpour, F. Karimi , t-Best approximation in fuzzy normed spaces, Iran. J. Fuzzy Syst., 5, No 2 (2008), 93-99.
  17. [17] P. Veeramani, Best approximation in fuzzy metric spaces, J. Fuzzy Math., 9, No 1 (2001), 75-80.
  18. [18] J.-Z. Xiao, X.-H. Zhu, Fuzzy normed spaces of operators and its complete- ness, Fuzzy Sets and Systems, 133, No 3 (2003), 389-399.