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Abstract: In this article, the Parker-Sochacki method is extended to solving
boundary values of Nth order differential equations. By recasting the problem
as a system of constant coefficient polynomial ordinary differential equation, the
coefficients of the power series solution is computed iteratively. The closed form
solution is obtained by employing Laplace-Padé series summation as an after-
treatment procedure. Application of the new technique to various examples
elucidated the accuracy and reliability of the approach.
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1. Introduction

In this article, based on the Parker-Sochacki method (PSM) [19], we propose
a new technique for solving boundary value problems of Nth order ordinary
differential equations of the form

u™M(t) = ft,u(®), te [to, T 1)

subject to two (g2 = 0) or three-point boundary conditions

Received: August 7, 2016 (© 2016 Academic Publications



598 S.0. Akindeinde

u(to) = Up,
g1 (u(T),u/(T), - ™" HT)) g2 (uln), o' (n), - () = 0,

where T' > t0,0 € [to, T}, f : [to,T] x R — R and g1, g2 are continuous functions
(possibly nonlinear), and n € (fp,7"). Furthermore, we assume that problem
(1) satisfies all the requirements for the existence of solution as can be found
for instance in [13, 17] and [23].

Boundary value problems of the form (1) appear frequently in biological
modeling and has received research attentions in the literature. Finding ex-
act solution to these problems has remained a difficult task for researchers for
decades. This has led to emergence of approximate analytic methods for solv-
ing such problems. These methods include the Adomian decomposition method
(ADM) [1], the homotopy perturbation method (HPM) [7], homotopy analysis
method (HAM), variational iteration method (VIM) [8] and differential trans-
formation method (DTM) [20] as well as their numerous modifications. Since
the aforementioned methods produce solution in form of power series, typical
of power series solution, they inadvertently suffers limited region of conver-
gence and validity. Motivated by the above works, we introduce an improved
Parker-Sochacki method - a new, easy-to-implement technique for solving the
boundary value problem 1 that not only extend the domain of validity of the
power series solution but also yield the exact solution.

The Parker-Sochacki method (PSM) is an extension of the conventional
power series method to solving nonlinear initial value problems. Through ap-
propriate variable substitutions, the boundary value problem 1 is reduced to a
system of first-order, constant-coefficient ordinary differential equation (ODE)
which is easily accessible to the method. The PSM has been applied in the
literature to solve various initial value problems [16, 18, 19, 21, 22]. Recently,
the method has been extended to solving two-point boundary value problems
in [2]. In the present article, following [2], the series solution of (1) is firstly
computed using the Parker-Sochacki method. However, as hinted earlier, such
series solutions often possess a limited interval of convergence thereby limiting
their usefulness. In the next step, the computed series solution are subjected
to Laplace-Padé post-processing in order to obtain the exact solution. The do-
main of convergence of the computed series solution is thus extended, thereby
improving our previous result in [2]. In addition, for the first time, the method
is applied to linear and nonlinear three-point boundary value problems.

A few comments are also in order on Laplace-Padé post-processing proce-
dure. The Laplace-Padé after-treatment procedure has been used by several
authors to improve known semi-analytical techniques. The method has been
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used to improve the Adomian decomposition method in [9], the homotopy per-
turbation method [24, 14], the differential transformation method and Laplace
series method [15, 6, 5, 11]. In this paper, the Laplace-Padé post-processing
procedure is employed as an after-treatment to derive exact solutions of two
and three-point boundary value problems.

2. Description of the Method
2.1. The Parker-Sochacki Method

The Parker-Sochacki Method (PSM) is an extension, to nonlinear differential
equations, of the conventional power series method for solving system of non-
linear ordinary differential equations of the form

y' = F(y), y(to) =yo. (2)

If the problem is not already in this form, through appropriate auxiliary vari-
ables, the problem is recast as a system of constant coefficient ODE. Thus the
solution to the original problem is a subset of the solution of the new system
of equations. Interestingly, for higher order ODE problems, the unknown func-
tion as well as its derivatives are all computed at once through simple recursive
relations. Without loss of generality let tyg = 0. Note however that this choice
is not a restriction on the applicability of the method as the scaling t — t — #g
can always bring problems with ty # 0 to this case. In fact, the method ap-
plies straightforwardly as long as domain of validity of the problem contains
the point 0. Suppose that the dependent variable y(¢) can be expressed as

N .
y(t) =Y yit', (3)
=0

where yo = y(0), y1 = ¥'(0), y2 = %¥”(0),... Similarly, let us write y’(t) =
ZZ]\L 0 yit'. Differentiating the original series and shifting index appropriately it
holds

N N
Y = yit' => (i+1yir1,
=0 1=0
so that ,
i = i _ F(y:)
T i+ 1

Hence, solution of arbitrary order can be computed using the above coefficients
in (3).
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The following basic arithmetic operations on power series (as can be found
in [4] and [12]) are useful in dealing with possibly nonlinear polynomial function

F(y).

Proposition 1. If f,g,h : t € R — R are polynomial functions and
denoting by h; the jth power series coefficient of h(t) = ;- hjt!, we have

i, ifh(t) = f(£) + g(t) then
h; = fj % gj;

ii. (Cauchy-product) if h(t) = f(t) - g(t) then

J
hj = fi-igi-

i=0
2.2. Improved Parker-Sochacki Method (IPSM)

One of the major criticism of methods for computing series solution of differen-
tial equations is that the series solution often have finite radius of convergence.
This is more pronounced when dealing with problems on infinite domains, for
instance problems in fluid mechanics. The need to improve convergence of series
solution therefore becomes imperative. A blend of series solution methods and
appropriate convergence accelerator remain important recipe for solving ini-
tial and boundary value problems of differential equations. Known applicable
convergence-accelerators include the Padé approximant [10], Continuous Ana-
lytic Continuation [3] and Wynn-epsilon convergence [25]. For some problems,
even a combination of these methods are required in order to obtain a closed
form solution of the problem or to extend the domain of validity of the series
solution. In this article, we follow the idea of [5, 6, 9, 11, 14, 15, 24] to employ a
combination of the Laplace transform approach and Padé approximant in order
to obtain exact solution or significantly improved solution to (1).

2.3. Laplace-Padé Post Processing

Suppose that the power series solution yp(t) of (1) has been computed following
the discussion of Section 2.1, the exact solution y(t) can be obtained by applying
Laplace-Padé post processing to yp(t) via the following steps:

1. Apply Laplace transform to yp(t),

2. Replace s by %,
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3. Apply Padé approximant to the resulting series,
4. Replace t by %,

5. Finally, apply inverse Laplace transform to obtain a closed form solution
(if it exists), otherwise an improved approximation than yp(t) is obtained.

Remark 2. 1. The [L/M] Padé approximant should be applied to the
truncated Nth order series yp(t) in such a way that L + M < N. We
proceed to step S3 of the post-processing as soon as at least two [L/M]
Padé approximant give the same rational function.

2. We also point out that since Laplace transforms and Padé approximant
are inbuilt in many computational packages such as Maple, the above
procedure can easily be automated in a few lines of code in any symbolic
computation platform.

3. Numerical Examples

Here the proposed technique of Section 2 is applied to some two- and three-point
boundary value problems.

Example 3. Consider the fifth order nonlinear two-point BVP
u® () = e ut(z), 0<z<1
subject to

w(0) =4'(0) =u"(0) =1, wu(l)=4d'(1)=e
with known exact solution u(x) = e”.
Adopting the variable substitutions v = v/, w = u”, t = v, z =u®, p =
e~ % the BVP reduces to a first order system
W=v 0 =w;w =t =z z/:qu; p = —p,

subject to initial conditions with ug = vg = wg = 1,ty = a, 29 = b where the
constants a = u”(0), b = u®(0) are to be determined from the boundary
conditions u(1) = /(1) =e.
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Using the PSM, we obtained the series solution

@) =14+o+ L0 b o (4)
) = 2 T T T T T a0 T

Imposing the boundary conditions u(1) = u/(1) = e on the 5th order series
solution yields
a = 0.9999999824, b = 1.000000049.

Hence, the 5th order PSM solution is obtained as

X 1
u(w) =1+ a + 5o + 01660666637 2" + 0.04166666871 2" + - o°.

Now applying step S1 and S2 in Section 2.3 yields
U(z) = x + 22 + 2° + 0.9999999822 2% + 1.000000049 z° + 5.

[L/M] Pade approximant of U(z) with L, M < 3 gives 2. Setting z = 1/s

11—z

yields U(s) = 8711 whose inverse Laplace transform is given by

the exact solution.

Example 4. Consider the two-point boundary value problem
y//(t) = €4t7 te (_17 1)7 y(il) =0

with known closed form solution

et — tsinh4 — cosh 4

Employing the variable substitution v = 3/, w = e*, the above BVP
reduces to a system of first order constant-coefficient ODE

/ / /
y=v, v =w, w =4dw.

Applying the PSM on this system, we obtained the PSM series solution

®) bt 12 N 23 N 24 N 8P N 16t6 N 64t7 N 3218
_= a _— _ —_ R
y 23 "3 "15 45 315 ' 315
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where the constants a and b denote respectively y(0) and 3/(0) which are to be
determined from the boundary conditions y(+1) = 0. Imposing these bound-
ary conditions on the 20th order series solution gives a = —1.644264551, b =
—1.455619820 which are used in the PSM solution to obtain

2 o3 ot 85 16t6
t) = 1.644264551 — 1.455619820¢ + — + — + — + —
y(t) 64426455 556980+2+3+3+15+45
64¢t7 328

T3 T3 T

We now apply the post-processing procedure of Section 2.3 on the 20th
order PSM solution yr(t). Successive application of steps S1 and S2 gives

Y () = —1.644264551 ¢ — 1.455619820 % + ¢3 + 4t* + 16> + 641°
+256.0t7 +1024.05 + 4096 t” + 16384 t'° + 65536 11
+ 262144 t12 + 1048576 '3 + 4194304 t** + 16777216 1
+ 67108864 16 + 268435456 t7 4 1073741824 ¢'8
+ 4294967296 t1% + 17179869180 +%° + 68719476740 2.

Next, [L/M] Pade approximant of Y (¢) with L = M = 3,4,5,6 all give

—1.644264551 ¢ + 5.121438384 t2 + 6.822479278 t3

[L/M] = —
0.9999999998 — 4.0

Replacing t by 1/s and taking inverse Laplace transform yields the exact solu-
tion

y(t) = —1.705619820 ¢ 4 0.06249999946 1000000001t _ 1 706764551

to nine places of decimal.

Example 5. We consider a linear three-point BVP
2" = —cost, x(0)=0, 3x(1/3)+22'(1)=0
with known closed form solution z(t) = (1 —cos + + Zsin1) ¢ + cost — 1.

If welet u=2x, v=2a', 2= —cost, w =sint, the problem becomes
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subject to the initial conditions
u(0) =0, v(0)=a, 2(0)=-1, w(0)=0

where the unknown a = 2/(0) is to be determined from the other boundary
condition. The PSM solution is obtained as
2 4 46 48 410
x(t):at—ﬁﬁ-z—a-i-g—l—o!"fﬂ”

Imposing the boundary condition 3x(1/3) + 22/(1) = 0 on 14th order solu-

tion, we obtained
a = 2'(0) = 0.6160237102.
With N = 10, we have the truncated series solution
t2 t4 t6 t8 th

The convergence of this series solution is improved using the proposed post-
processing operations. Steps S1 and S2 applied on the 10th order PSM solution
gives

X(t) = 0.6160237102¢% — 3 + > — ¢7 +° — 'L,

Furthermore, [4/M] Pade approximant of X (¢) with M = 3,4,5,6 all yield

0.6160237102 t2 — t3 + 0.6160237102 t*
1+1¢2

which on replacing ¢ by 1/s we obtain

~0.6160237102 52 — 5+ 0.6160237102
B s2(s2+1)

X(s)

whose inverse Laplace transform is
x(t) = 0.6160237102¢ + cos (t) — 1

the exact solution.

Example 6. Consider the fourth order nonlinear three-point BVP
y W)y =et21t), 0<t<1

subject to
y(0)=y'(0) =1, y(1)=e, y(3/4)=3/4

with known exact solution y(t) = e’.
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—X

As before, the substitutions v = y,v = ¢/, w = y’,t =y, 2 = e * reduce

the problem to the system

Applying the PSM, we obtained the series solution

1 1 1 1
D=1+4+t+-at’>+ b3+ —t*+ —+#°
y(t) =141+ gat”+ b7+ o0t 4+ o5
1

+ Pl (ol L)y
I S _ .
720 360 5040 2520 ’

where a = 3”(0), b = y"(0) are to be determined. Imposing the boundary
conditions y(1) = e, y(3/4) = 3/4 on the 10th order PSM solution yields

a = .9999998606, b = 1.000000583.

Finally applying the post-processing procedure on the truncated solution

1 1
y(t) =1+t +0.4971199138 ¢ 4 0.1711619142¢3 + 5 t* 4+ o0 =

with [L/M] Pade approximant (L, M < 3) yields the exact solution y(t) = €.

4. Conclusion

In this article, the closed form solution of two and three-point boundary value
problems have been derived using a blend of Parker-Sochacki method and
Laplace-Pade series technique. The proposed method yielded the exact so-
lution of the two and three-point boundary value problems considered. The
performance of the method on both high order linear and non-linear problems
showed high accuracy and reliability of the new method. The proposed method
therefore serves as a viable alternative approach to solving boundary value
problems.
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