L2 AND L1 CONTROL THEORETIC SMOOTHING SPLINES

Abstract

L1 and L2 control theoretic splines are effective for Gaussian noise in data since estimations are based on L1 and L2 optimization. Here, it is shown that the result is not robust against outliers for L2 control theoretic splines. Numerical simulations for both y(t) and dy/dt under Gaussian and Laplacian noise are given. It is shown that for meaningful sampling data (number of data more than 75) the L1 control theoretic spline has better performance than L2 control theoretic spline. Numerical results and graphs for minimum, maximum and mean errors are given.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 29
Issue: 6
Year: 2016

DOI: 10.12732/ijam.v29i6.3

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press (2004).
  2. [2] M. Egerstedt, C. Martin, Control Theoretic Splines, Princeton University Press (2010).
  3. [3] M. Egerstedt, C. Martin, Optimal trajectory planning and smoothing splines, Automatica (2001), 1057-1064.
  4. [4] M. Nagahara, C. Martin, Monotone smoothing splines using general linear systems, Asian Kournal of Control (2013), 461-468.
  5. [5] D. Luenberger, Optimization by Vector Space Methods, John Wiley, New York (1969).
  6. [6] S. Sun, M. Egerstedt and C. Martin, Control theoretic smoothing splines, Automatic Control, IEEE Trans. (2010), 2271-2279.
  7. [7] M. Nagahara, C. Martin, L 1 -optimal splines for outlier rejection, 59th World Statistics Congress (2013), 1137-1142.
  8. [8] G. Wahba, Spline Models for Observational Data, SIAM (1990).
  9. [9] Z. Zhang, J. Tomlinson and C. Martin, Splines and linear control theory, Acta Math. Appl., 49 (1997), 1-34.
  10. [10] W. Rugh, Linear Systems Theory, Princeton Hall (1996).
  11. [11] M. Nagahara, C. Martin, L 1 -control theoretic smoothing splines, Signal Processing. IEEE Trans. (2012).
  12. [12] R. Tibshirani, Splines and Linear Control Theory, J. R. Statist. Soc., 58 (1996), 267-288.
  13. [13] M. Grant, S. Boyd, CVX: Matlab software for disciplined convex program- ming, http://cvxr.com/cvx (2011).
  14. [14] M. Egerstedt, C. Martin, Optimal trajectory planning and smoothing splines, Automatica, 37, No 7 (2001), 1057-1064.
  15. [15] H. Kano, M. Egerstedt, H. Fujioka, S. Takahashi and C. Martin, Periodic smoothing splines, Automatica, 44, No 1 (2008), 185-192.
  16. [16] I.J. Schoenberg, Spline functions and the problem of graduation, Proc. Natl. Acad. Sci. USA, 52 (1964).