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Abstract: We consider the hypergeometric translation operator associated
to the Cherednik operators and the Heckman-Opdam theory attached to the
root system of type BC2. We prove in this paper that these operators are
positivity preserving and allows positive integral representations. In particular
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1. Introduction

In [1] I. Cherednik introduced a family of differential-difference operators that
nowadays bear his name. These operators play a crucial role in the theory of
Heckman-Opdam’s hypergeometric functions, which generalizes the theory of
Harish-Chandra’s spherical functions on Riemannian symmetric spaces (see [2],
[3], [6]).
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To study in [8], [9] a harmonic analysis associated with the Cherednik op-
erators and the Heckman-Opdam theory, the author has introduced the hyper-
geometric translation operators. In many situations to solve problems of this
harmonic analysis we need the positivity of these operators, and the product
formulas of the Opdam-Cherednik kernel and the Heckman-Opdam hypergeo-
metric function are given by integrals with positive measures. These properties
are not yet proved in the general case, under some conditions on the root system
and the multiplicity function (see [10]).

This paper is a contribution towards these questions in the case of the
Cherednik operators and the Heckman-Opdam theory attached to the root
system of type BC2.

We prove in this paper the positivity of the hypergeometric translation
operators Tx,T

W
x , x ∈ R

2, associated respectively to the Cherednik operators
and the Heckman-Opdam theory, and we deduce that for all x, u ∈ R

2, there
exist positive measures mx,u,m

W
x,u on R

2 with compact support and of norm
equal to 1, such that:

- For all C∞-function g on R
2 we have

Tx(g)(u) =

∫

R2

g(z)dmx,u(z). (1)

- For all C∞-function g on R
2 invariant by the Weyl group W , we have

T W
x (g)(u) =

∫

R2

g(z)dmW
x,u(z). (2)

From the relations (1), (2) we deduce the following product formulas for the
Opdam-Cherednik kernel Gλ(x), λ ∈ C

2, and the Heckman-Opdam hypergeo-
metric function Fλ(x), λ ∈ C

2:

∀ x, u ∈ R
2, Gλ(x)Gλ(u) =

∫

R2

Gλ(z)dmx,u(z), (3)

∀ x, u ∈ R
2, Fλ(x)Fλ(u) =

∫

R2

Fλ(z)dm
W
x,u(z). (4)

These formulas imply the following estimates for the functionsGλ(x) and Fλ(x):

∀ λ ∈ R
2, sup

x∈R2

|Gλ(x)| = 1, (5)

∀ λ ∈ R
2, sup

x∈R2

|Fλ(x)| = 1. (6)

Our proof of the positivity of the hypergeometric translation operator Tx, x ∈
R
2, uses essentially the properties of the heat kernel pt(x, y), t > 0, associated

with the Cherednik operators and the positivity of the transmutation operators
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associated with the Cherednik operators proved in [12]. We deduce the positiv-
ity of the hypergeometric translation operator T W

x , x ∈ R
2, from the positivity

of the operator Tx and the relation between Tx and T W
x .

We remark that M. Rösler has considered in [4] the non-compact Grassmann
manifolds SO0(p, q)/(SO(p) × SO(q), SU(p, q)/SU(p) × U(q) and
Sp(p, q)/Sp(p) × Sp(q). Their real rank is q and their spherical functions can
be identified with the hypergeometric functions of type BCq with multiplicities
depending on p. She gives an explicit product formula for these spherical func-
tions. By using the interpolation program in these cases, she obtains a product
formula for three classes of hypergeometric functions of type BCq. This prod-
uct formula for q = 2 is a particular case of the product formula (4) (see [9],
Section 6).

2. The Cherednik operators on R
2 and their eigenfunctions

(See [2], [3], [6], [7])

We consider R
2 with the standard basis {e1, e2} and inner product 〈., .〉 for

which this basis is orthonormal. We extend this inner product to a complex
bilinear form on C

2.

2.1. The root system of type BC2 and the multiplicity function

The root system of type BC2 can be identified with the set R given by

R = {±e1,±e2,±2e1,±2e2} ∪ {±e1 ± e2}, (2.1)

which can also be written in the form

R = {±αi, i = 1, 2, ..., 6},

with

α1 = e1, α2 = e2, α3 = 2e1, α4 = 2e2, α5 = (e1 − e2), α6 = (e1 + e2). (2.2)

We denote by R+ the set of positive roots

R+ = {αi, i = 1, 2, ..., 6}, (2.3)

and by Ro
+ the set of positive indivisible roots i.e., the roots α ∈ R+ such that

α
2 /∈ R+. Then we have

R0
+ = {α1, α2, α5, α6}. (2.4)
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For α ∈ R, we consider

rα(x) = x− 〈ᾰ, x〉α, with ᾰ =
2α

‖α‖2
, (2.5)

the reflection in the hyperplane Hα ⊂ R
2 orthogonal to α. The reflections

rα, α ∈ R, generate a finite group W ⊂ O(2), called the Weyl group associated
with R. In this case W is isomorphic to the hyperoctahedral group which is
generated by permutations and sign changes of the ei, i = 1, 2,.

A function k : R →]0,+∞[ on the root system R is called a multiplicity
function if it is invariant under the action of the Weyl group W . In this case it
can be written in the form k = (k1, k2, k3), where k1, k2 are the values on the
roots α1, α2 and α3, α4, and k3 is the value on the roots α5, α6.

The positive Weyl chamber denoted by a
+ is given by

a
+ = {x ∈ R

2 ;∀ α ∈ R+, 〈α, x〉 > 0}, (2.6)

it can also be written in the form

a
+ = {(x1, x2) ∈ R

2 ;x1 > x2 > 0}, (2.7)

we denote by a
+ its closure. Let also R

2
reg be the subset of regular elements in

R
2. i.e. those elements which belong to no hyperplane

Hα = {x ∈ R
2; 〈α, x〉 = 0}, α ∈ R.

Let Ak denote the weight function

∀ x ∈ R
2,Ak(x) =

∏

α∈R+

| sinh〈
α

2
, x〉|2k(α). (2.8)

2.2. The Cherednik operators on R
2

The Cherednik operators Tj, j = 1, 2, on R
2 associated with the Weyl group

W and the multiplicity function k are defined for f of class C1 on R
2 and

x ∈ Rreg = R
2\
⋃

α∈R

Hα by

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.9)

with

ρj =
1

2

∑

α∈R+

k(α)αj , and αj = 〈α, ej〉. (2.10)
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They form a commutative system of differential-difference operators.
The operators T1, T2 can also be written in the following form

T1gf(x) =
∂

∂x1
f(x) + k1

{f(x)− f(rα1
x)}

1− e−〈α1,x〉
+ 2k2

{f(x)− f(rα3
x)}

1− e−〈α3,x〉

+k3

[f(x)− f(rα5
x)

1− e−〈α5,x〉
+
f(x)− f(rα6

x)

1− e−〈α6,x〉

]

− (
1

2
k1 + k2 + k3)f(x),

(2.11)

T2f(x) =
∂

∂x2
f(x) + k1

{f(x)− f(rα2
x)}

1− e−〈α2,x〉
+ 2k2

{f(x)− f(rα4
x)}

1− e−〈α4,x〉

+k3

[

−
(f(x)− f(rα5

x

1− e〈α5,x〉

)

+
(f(x)− f(rα6

x)

1− e−〈α6,x〉

)]

− (
1

2
k1 + k2)f(x).

(2.12)

2.3. The eigenfunctions of the Cherednik operators

We denote by Gλ, λ ∈ C
2, the unique solution of the system

{

TjGλ(x) = −iλjGλ(x), x ∈ R
2, j = 1, 2,

Gλ(0) = 1.
(2.13)

It is called the Opdam-Cherednik kernel.

We consider the function Fλ, λ ∈ C
2, defined by

∀ x ∈ R
2, Fλ(x) =

1

|W |

∑

w∈W

Gλ(wx). (2.14)

This function is the unique W -invariant function on R
2, which satisfies the

partial differential equation

{

p(T )Fλ(x) = p(−iλ)Fλ(x), x ∈ R
2,

Fλ(0) = 1,
(2.15)

for all W -invariant polynomial p on R
2 and p(T ) = p(T1, T2). It is called the

Heckman-Opdam hypergeometric function.

The functions Gλ and Fλ possess the following properties (see [6]):

i) For all x ∈ R
2 the function λ→ Gλ(x) is entire on C

2.

ii) We have

∀ x ∈ R
2, ∀ λ ∈ C

2, Gλ(x) = G−λ(x). (2.16)



692 K. Trimèche

iii) We have
∀ x ∈ R

2, ∀ λ ∈ C
2, |Gλ(x)| ≤ GiIm(λ)(x). (2.17)

iv) We have
∀ x ∈ R

2 ,∀ λ ∈ R
2, |Gλ(x)| ≤ |W |1/2. (2.18)

∀ x ∈ R
2, ∀ λ ∈ R

2, |Fλ(x)| ≤ |W |1/2. (2.19)

v) For x ∈ R
2, we denote by x+ the only point in the orbit Wx which lies

in a
+. Then we have

∀ x ∈ R
2, G0(x) ≍

∏

α∈R0
+

〈α,x〉≥0

(1 + 〈α, x〉)e−〈ρ,x+〉, (2.20)

with ρ given by (2.10).

vi) The function F0 satisfies the estimate

∀ x ∈ a+, F0(x) ≍ e−〈ρ,x〉
∏

α∈R0
+

(1 + 〈α, x〉). (2.21)

vii) Let p and q be polynomials of degreem and n. Then there exists a positive
constant M such that for all x ∈ R

2 and λ ∈ C
2, we have

|p(
∂

∂λ
)q(

∂

∂x
)Gλ(x)| ≤M(1 + ‖λ‖)n(1 + ‖x‖)mF0(x)e

maxw∈W Im〈wλ,x〉.

(2.22)

viii) The function Gλ, λ ∈ C
2, admits the following Laplace type representation

∀ x ∈ R
2, Gλ(x) =

∫

R2

e−i〈λ,y〉dµx(y), (2.23)

where µx is the positive measure on R
2 with support in B(0, ||x||) the

closed ball of center 0 and radius ||x||, (see [12] p.197).

ix) From (2.14), (2.23) we deduce that the function Fλ, λ ∈ C
2, possesses the

Laplace type representation

∀ x ∈ R
2, Fλ(x) =

∫

R2

e−i〈λ,y〉dµWx (y), (2.24)

where µWx is the positive measure with support in B(0, ||x||) given by

µWx =
1

|W |

∑

w∈W

µwx. (2.25)
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3. The transmutation operators associated with the Cherednik
operators (See [7])

Notations. We use the following denotations:
- E(R2) the space of C∞-functions on R

2. Its topology is defined by the
seminorms

qn,K(ϕ) = sup
|µ|≤n
x∈K

|Dµϕ(x)|,

where K is a compact subset of R2, n ∈ N, and

Dµ =
∂|µ|

∂µ1x1∂µ2x2
, µ = (µ1, µ2) ∈ N

2, |µ| = µ1 + µ2.

- D(R2) the space of C∞-functions on R
2 with compact support. We have

D(R2) =
⋃

a>0

Da(R
2),

where Da(R
2) is the space of C∞-functions on R

2 with support in the closed
ball B(0, a) of center 0 and radius a. The topology of Da(R

2) is defined by the
semi-norms

pn(ψ) = sup
|µ|≤n

x∈B(0,a)

|Dµψ(x)|, n ∈ N.

The space D(R2) is equipped with the inductive limit topology.
- S(R2) the classical Schwartz space on R

2. Its topology is defined by the
seminorms

Qℓ,n(f) = sup
|µ|≤n
x∈R2

(1 + ‖x‖2)ℓ|Dµf(x)|, n, ℓ ∈ N.

- S2(R
2) the generalized Schwartz space of C∞-functions on R

2 such that
for all ℓ, n ∈ N, we have

Pℓ,n(f) = sup
|µ|≤n
x∈R2

(1 + ‖x‖2)ℓ(F0(x))
−1|Dµf(x)| < +∞,

where F0(x) is the Opdam-Cherednik kernel corresponding to the eigenvalue
zero.

It is topologized by means of the seminorms Pℓ,n, ℓ, n ∈ N.
By using for x ∈ R

2, the positive measure µx given by (2.23), we define
the transmutation operator called also the trigonometric Dunkl intertwining
operator Vk on E(R2) by
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∀ x ∈ R
2, Vk(g)(x) =

∫

R2

g(y)dµx(y). (3.1)

The operator Vk is the unique linear topological isomorphism from E(R2) onto
itself satisfying the transmutation relations

∀ x ∈ R
2, TjVk(g)(x) = Vk(

∂

∂yj
g)(x), j = 1, 2, (3.2)

and the condition
Vk(g)(0) = g(0), (3.3)

(see [7], p. 309-310).
The dual tVk of the operator Vk is defined by the following duality relation

∫

R2

tVk(f)(y)g(y)dy =

∫

R2

Vk(g)(x)f(x)Ak(x)dx, (3.4)

with f in D(R2) and g in E(R2).
This operator is given by

∀ y ∈ R
2, tVk(f)(y) =

∫

R2

f(x)dνy(x), (3.5)

where νy, y ∈ R
2, is the positive measure on R

2 given by the relation (4.29) of
[12] p.195, and verifying

νy(K) < +∞, for every compact K ⊂ R
2. (3.6)

The operator tVk is a linear topological isomorphism from
- D(R2) onto itself,
- S2(R

2) onto S(R2),
satisfying the transmutation relations

∀ y ∈ R
2, tVk((Tj + Sj)f)(y) =

∂

∂yj
tVk(f)(y), j = 1, 2, (3.7)

where Sj is the operator on D(R2) (resp. S2(R
2)) given by

∀ x ∈ R
2, Sj(h)(x) =

∑

α∈R+

k(α)αjh(rαx). (3.8)

The operator tVk possesses also the following property : for all f in D(R2) we
have

suppf ⊂ B(0, a) ⇔ supptVk(f) ⊂ B(0, a), (3.9)

where B(0, a) is the closed ball of center 0 and radius a > 0.
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4. The hypergeometric Fourier transform associated with the
Cherednik operators (See [3], [6])

Notations:
For a > 0 we denote by PW (C2)a the space of functions h which are entire

on C
2 and satisfying

∀ m ∈ N, sm(f) = sup
λ∈C2

(1 + ‖λ‖2)m|h(λ)|e−a‖Im(λ)‖ < +∞.

Its topology is given by the seminorms sm,m ∈ N.
We consider the space PW (C2) of entire functions on C

2 which are rapidly
decreasing and of exponential type. We have

PW (C2) = ∪a>0PW (C2)a.

It is equipped with the inductive limit topology.

Definition 4.1. The hypergeometric Fourier transform H is defined for f
in D(R2) by

∀ λ ∈ C
2,H(f)(λ) =

∫

R2

f(x)Gλ(x)Ak(x)dx. (4.1)

Theorem 4.2. The transform H is a topological isomorphism from

i) D(R2) onto PW (C2).

ii) S2(R
2) onto S(R2).

The inverse transform H−1 is given by

∀ x ∈ R
2,H−1(h)(x) =

∫

R2

h(λ)Gλ(−x)Ck(λ)dλ, (4.2)

where

∀ λ ∈ R
2, Ck(λ) = c|Ck(λ)|

−2
∏

α∈R+

(

1−
k(α)

i〈λ, ᾰ〉 − 1
2k(

α
2 )

)

, (4.3)

with c a positive constant chosen in such a way that Ck(−ρ) = 1, and for λ ∈ R
2:

(Ck(λ))
−1 =

∏

α∈R+

Γ(i〈λ, ᾰ〉+ k(α) + 1
2k(

α
2 ))

Γ(i〈λ, α〉 + 1
2k(

α
2 ))

(4.4)

with the convention that k(α2 ) = 0 if α
2 /∈ R+.

We have

∀ λ ∈ R
2, |Ck(λ)|

2 = Ck(λ)Ck(−λ) = Ck(λ)Ck(λ). (4.5)
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Remark 4.3. The function Ck(λ) is continuous on R
2 and satisfies the

following estimate

∀ λ ∈ R
2, |Ck(λ)| ≤ const (1 + ‖λ‖2)b (4.6)

for some b > 0.

5. The hypergeometric translation operator and its dual and the
hypergeometric convolution product associated with the

Cherednik operators

5.1. The hypergeometric translation operator and its dual

The hypergeometric translation operator Tx, x ∈ R
2, is defined on E(R2) by

∀ y ∈ R
2,Tx(f)(y) = (Vk)x(Vk)y[V

−1
k (f)(x+ y)], (5.1)

(see [8], p. 33).

In the following we give some properties of the operator Tx, x ∈ R
2:

1. For all x ∈ R
2, the operator Tx is continuous from E(R2) into itself.

2. For all f in E(R2) and x, y ∈ R
2, we have

Tx(f)(0) = f(x) and Tx(f)(y) = Ty(f)(x). (5.2)

3. For all x, y ∈ R
2 and λ ∈ C

2, we have the product formula

Tx(Gλ)(y) = Gλ(x)Gλ(y), (5.3)

where Gλ(x) is the Opdam-Cherednik kernel given by (2.13).

For each x ∈ R
2, the dual of the hypergeometric translation operator Tx is

the operator tTx defined on D(R2) (resp. S2(R
2)), by

∀ y ∈ R
2, tTx(f)(y) = (Vk)x(

tV −1
k )y[

tVk(f)(y − x)], (5.4)

(see [8], p. 34-39).
It satisfies the following properties:

1. For all x ∈ R
2, the operator tTx is continuous from

- D(R2) into itself.

- S2(R
2) into itself.
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2. The operator tTx, x ∈ R
2, is related to the operator Tx, x ∈ R

2, by the
following two relations

i) For g in E(R2) and f in D(R2) (resp. S2(R
2)) we have

∫

R2

Tx(g)(z)f(z)Ak(z)dz =

∫

R2

g(y)tTx(f)(y)Ak(y)dy. (5.5)

ii) For f in D(R2) (resp. S2(R
2)) we have

∀ x, y ∈ R
2, tTx(f)(y) = Ty(f̆)(−x), (5.6)

where f̆ is the function given by

∀ x ∈ R
2, f̆(x) = f(−x).

3. For all f in D(R2) (resp. S2(R
2)) and x ∈ R

2, we have

∀ λ ∈ R
2,H(tTx(f))(λ) = Gλ(x)H(f)(λ). (5.7)

4. For all f in D(R2) (resp. S2(R
2)) and x, y ∈ R

2, we have

tTx(f)(y) =

∫

R2

Gλ(x)Gλ(−y)H(f)(λ)Ck(λ)dλ. (5.8)

5. For all f in D(R2) (resp. S2(R
2)) and x, y ∈ R

2, we have

tTx(f)(y) =
tT−y(f)(−x) (5.9)

6. For all f in D(R2) with support in the closed ball B(0, a) of center 0 and
radius a > 0, and x ∈ R

2, we have

supptTx(f) ⊂ B(0, a+ ‖x‖). (5.10)

5.2. The hypergeometric convolution product

By using the operator tTx, x ∈ R
2, we define the hypergeometric convolution

product f ∗H g of the functions f, g in D(R2) (resp. S2(R
2)) by

∀ y ∈ R
2, f ∗H g(y) =

∫

R2

tTx(f)(y)g(x)Ak(x)dx, (5.11)

(see [8], p. 26 and p. 39-41).
The hypergeometric convolution product ∗H satisfies the following proper-

ties:

1. It is commutative and associative.
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2. For all f, g in D(R2) (resp. S2(R
2)) the function f ∗H g belongs to D(R2)

(resp. S2(R
2)).

3. For all f, g in D(R2) (resp.S2(R
2)), we have

∀ λ ∈ R
2,H(f ∗H g)(λ) = H(f)(λ).H(g)(λ). (5.12)

4. For all f, g in D(R2) (resp. S2(R
2)), we have

tVk(f ∗H g) = tVk(f) ∗
tVk(g),

where ∗ is the classical convolution product on R
2.

6. The Gauss and heat kernels associated with the Cherednik
operators (See [6], [8])

Definition 6.1. Let t > 0. The Gauss kernel pt(x, y) associated with the
Cherednik operators, is defined for x, y ∈ R

2, by

pt(x, y) =

∫

R2

e−t(‖λ‖2+‖ρ‖2)Gλ(x)Gλ(−y)Ck(λ)dλ. (6.1)

Notations. We denote by:
- Hk the heat operator associated with the Cherednik operators given by

Hk = Lk −
∂

∂t
− ‖ρ‖2, (6.2)

where Lk is the Heckman-Opdam Laplacian defined for all f of class C2 on R
2

by

Lkf = (T 2
1 + T 2

2 )f. (6.3)

It has the following form : For all x ∈ R
2
reg,

Lkf(x) = ∆f(x) +
∑

α∈R+
k(α) coth( 〈α,x〉2 )〈∇f(x), α〉

+
∑

α∈R+

k(α)‖α‖2

4 sinh2 〈α,x〉
2

{f(rαx)− f(x)}+ ‖ρ‖2f(x),
(6.4)

where ∆ and ∇ are respectively the Laplacian and the gradient on R
2.

- Et, t > 0, the fundamental solution of the operator Hk given by

∀ x ∈ R
2, Et(x) = pt(x, 0). (6.5)

It is called also the heat kernel.
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Proposition 6.1.

i) For all t > 0, the function Et belongs to S2(R
2).

ii) For all t > 0 and x ∈ R
2, we have

Et(x) ≍ t−γ−1





∏

α∈Ro
+

Mα(t, x)



 e−t‖ρ‖2−〈ρ,x+〉−
‖x‖2

4t , (6.6)

where x+ denotes the unique conjugate of x in a+,

γ =
∑

α∈R+

k(α) (6.7)

and

Mα(t, x) = 2−γ−1[(1 + |〈α, x〉|)(1 + 2t+ |〈α, x〉|)k(α)+k(2α)−1 ]. (6.8)

iii) For all t > 0, we have

∀ λ ∈ R
2,H(Et)(λ) = e−t(‖λ‖2+‖ρ‖2). (6.9)

iv) The function (x, t) → Et(x) is strictly positive on R
2×]0,+∞[.

v) For all t > 0, we have
∫

R2

Et(x)Ak(x)dx = 1. (6.10)

vi) The function (x, t) −→ Et(x) satisfies

HkEt(x) = 0, on R
2×]0,+∞[. (6.11)

Proposition 6.2.

i) For all t > 0 and x ∈ R
2, the function y → pt(x, y) belongs to S2(R

2).

ii) For all t > 0 and x, y ∈ R
2, we have

pt(x, y) =
tTx(Et)(y). (6.12)

iii) The function (x, y, t) −→ pt(x, y) is strictly positive on R
2×R

2×]0,+∞[.
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iv) For all t > 0 and x ∈ R
2, we have
∫

R2

pt(x, y)Ak(y)dy = 1. (6.13)

v) For all y ∈ R
d, the function (x, t) → pt(x, y) satisfies

Hkpt(x, y) = 0, on R
2×]0,+∞[. (6.14)

Définition 6.3. The heat semigroup {Pt}t≥0 associated with the Cherednik
operators, is defined for f in S2(R

2) by

∀ x ∈ R
2, Ptf(x) =







∫

R2

pt(x, y)f(y)Ak(y)dy if t > 0,

f(x) if t = 0.
(6.15)

(See [6]).

Remark 6.4. The function Ptf(x) can also be written in the following
form

∀ x ∈ R
2 , Ptf(x) = Et ∗H f̆(−x), (6.16)

where ∗H is the hypergeometric convolution product given by the relation
(5.11), and f̆ is the function defined by

∀ x ∈ R
2, f̆(x) = f(x).

We consider the Cauchy problem: Given a continuous bounded function on
R
2. Find a function u(x, t) of class C2 on R

2×]0,+∞[, such that

{

Hku(x, t) = 0, on R
2×]0,+∞[,

u(x, 0) = f(x).
(6.17)

Proposition 6.5. (see [6])

i) {Pt}t≥0 is a strongly continuous semigroup on S2(R
2).

ii) Let f be a continuous bounded function on R
2. Then the function

u(x, t) = Ptf(x) solves the Cauchy problem (6.17).
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7. Positivity of the function tTx(pt(u, .)(y)

Proposition 7.1. Let t > 0 and x ∈ R
2. We have

∀ u, y ∈ R
2, tTx(pt(u, .))(y) =

∫

R2

e−t(‖λ‖2+‖ρ‖2)Gλ(x)Gλ(u)Gλ(−y)Ck(λ)dλ.

(7.1)

Proof. From Proposition 6.1 i), for all u ∈ R
2, the function z → pt(u, z)

belongs to S2(R
2). Then by using (5.8) we obtain

∀ u, z ∈ R
2, tTx(pt(u, .))(y) =

∫

R2

Gλ(x)Gλ(−y)H(pt(u, .))(λ)Ck(λ)dλ. (7.2)

On the other hand from (6.12), (5.7), we have

∀ u, λ ∈ R
2,H(pt(u, .))(λ) = H(tTu(Et))(λ) = Gλ(u)H(Et)(λ),

thus from (6.9) we obtain

∀ u, λ ∈ R
2,H(pt(u, .))(λ) = e−t(‖λ‖2+‖ρ‖2)Gλ(u). (7.3)

We deduce (7.1) from (7.2), (7.3). �

Corollary 7.2. Let t > 0 and x ∈ R
2. We have

∀ u, y ∈ R
2, tTx(pt(u, .))(y) = e−t‖ρ‖2

∫

R2

Ut,x(−y, z)dµ̆u(z), (7.4)

where µu is the measure given by (2.23) and µ̆u is the measure on R
2 defined

by
∫

R2

f(z)dµ̆u(z) =

∫

R2

f(−z)dµu(z), f ∈ E(R2), (7.5)

and

Ut,x(y, z) =

∫

R2

e−t‖λ‖2Gλ(x)Gλ(y)e
i〈λ,z〉Ck(λ)dλ. (7.6)

Proof. We deduce (7.4) from (7.1), (2.18), (2.23), (7.5), the positivity of
the measure µ̆x and Fubini’s theorem. �

In this section we prove first that for t > 0 and x ∈ R
2, the function

(y, z) → Ut,x(y, z) is positive on R
2 × R

2, and next we deduce the positivity of
the function tTx(pt(u, .))(y).

Proposition 7.3. Let t > 0 and x ∈ R
2. The function Ut,x(y, z) is of class

C∞ on R
2 ×R

2 with respect to the variables y and z and satisfies the equation
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∀ y, z ∈ R
2, (Tj +

∂

∂zj
)Ut,x(y, z) = 0, j = 1, 2. (7.7)

Proof. We obtain the results by derivation under the integral sign with
respect to the variables yj, zj , j = 1, 2, in the relation (7.6), by using (2.22),
(2.19), and by applying the relation (2.13). �

Proposition 7.4

i) Let t > 0 and x ∈ R
2. There exists a positive function M0(t) such that

∀ y, z ∈ R
2, |Ut,x(y, z)| ≤M0(t)F0(y), (7.8)

where F0(y) is the Heckman-Opdam hypergeometric function correspond-
ing to the eigenvalue zero.

ii) Let t > 0 and x ∈ R
2. We have

∀ y ∈ R
2, lim

‖z‖→+∞
Ut,x(y, z) = 0. (7.9)

iii) Let t > 0 and x ∈ R
2. The function (y, z) → Ut,x(y, z) is bounded on

R
2 ×R

2 and we have

lim
‖(y,z)‖→+∞

Ut,x(y, z) = 0. (7.10)

Proof.

i) We deduce (7.8) from (7.6), (2.22).

ii) By using (7.6) and the fact that from (2.18) the function e−t‖λ‖2 Gλ(x)
Gλ(y) is for all x, y ∈ R

2, integrable with respect to the Lebesgue measure
on R

2, we deduce (7.9) from Riemann-Lebesgue lemma.

iii) - The relations (7.6), (2.18) imply that the function (y, z) → Ut,x(y, z) is
bounded on R

2 × R
2.

- Let y be in R
2
reg. There exists w ∈W such that y = wy+ with y+ ∈ a+.

Then from the i) and (2.21) there exists a positive function M1(t) such
that

∀y ∈ R
2
reg, ∀z ∈ R

2, |Ut,x(y, z)| ≤M1(t)(
∏

α∈R+

0

(1 + 〈α, y+〉))e−〈α,y+〉.
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Thus the function Ut,x(y, z) tends to zero when y goes to infinity, uni-
formly with respect to the variable z. We deduce (7.10) from this result
and the continuity of the function Ut,x(y, z) on R

2 with respect to the
variable y.

�

Proposition 7.5.

i) Let t > 0 and x ∈ R
2. For all y, z ∈ R

2 the function Ut,x(y, z) is real.

ii) Let t > 0 and x ∈ R
2. The function Ut,x(y, z) is strictly positive on the

set

Y = {(y, z) ∈ R
2 × R

2 ; y ∈ R
2, z = 0}.

Proof.

i) We obtain the result from the relations (7.6), (2.16), (4.3) and a change
of variables.

ii) By using the relation

∀ λ ∈ R
2, Gλ(0) = 1,

we deduce from (7.6), (6.1) and Proposition 6.2 iii), that

∀ y ∈ R
2, Ut,x(y, 0) = e−t‖ρ‖2pt(x,−y) > 0.

�

Proposition 7.6. Let t > 0 and x ∈ R
2. For all α ∈ R+, and y, z ∈ R

2,
we have

Ut,x(rαi
y, z)− Ut,x(y, z) = −〈ᾰ, y〉〈∇Ut,x(y, z), α〉

+1
2(〈ᾰ, y〉)

2αtD2Ut,x(ξ, z)α,
(7.11)

with some ξ on the line segment between y and rαy.
Proof. We obtain (7.11) from the relation (2.5) and Taylor’s formula. �

Proposition 7.7. The Weyl chambers attached to the root system of type
BC2 are the following

a
+ = {x ∈ R

2; 〈α, x〉 > 0, i = 1, 2, ..., 6}, (7.12)

a
− = −a

+, (7.13)

a+1 = {x ∈ R
2 ; 〈αi, x〉 > 0, i = 1, 2, 3, 4, 6; 〈α5 , x〉 < 0}, (7.14)

a
−
1 = −a

+
1 . (7.15)
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Proof. We determine the Weyl chambers corresponding to the six roots of
R+, and next by applying the relations















2α1 = α3

2α2 = α4

α1 − α2 = α5

α1 + α2 = α6

,

we obtain the Weyl chambers (7.12), (7.13), (7.14), (7.15), the others are
empty.

Notations:

We denote by Cℓ, ℓ = 1, 2, the Weyl chambers a
+, a+1 and by Cℓ, ℓ = 3, 4,

the Weyl chambers a−, a−1 . Then we have

R
2 =

4
⋃

ℓ=1

Cℓ,

where Cℓ is the closure of Cℓ.

Theorem 7.8. For all t > 0, and x ∈ R
2 we have

∀ y, z ∈ R
2 , Ut,x(y, z) ≥ 0. (7.16)

Proof. The proof is made up in two steps.

In the first step we obtain some results concerning the positivity of the
function Ut,x(y, z) given by (7.6) on each of the set Cℓ × R

2, ℓ = 1, 2, 3, 4.

In the second step we use the fact that R
2 × R

2 = (∪4
ℓ=1Cℓ) × R

2 and the
result of the first step to deduce the positivity of the function Ut,x(y, z) on
R2 × R2.

1st Step

We consider the set Yℓ defined by

Yℓ = {(y, z) ∈ R
2 ×R

2 ; y ∈ Cℓ, z ∈ R
2}.

We denote by

Vℓ
t,x(y, z) = Ut,x(y, z)1Yℓ

(y, z),

where 1Yℓ
is the characteristic function of the set Yℓ. From Proposition 7.5 ii)

the function Vℓ
t,x(y, z) is strictly positive on the set Y . We shall prove that

it is positive on the set Yℓ\Y . If not we suppose by using Proposition 7.5 i)
and Proposition 7.4 iii) that it attains a strictly negative absolute minimum at
(yℓ, zℓ) ∈ Yℓ\Y , i.e.
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Vℓ
t,x(y

ℓ, zℓ) = inf
(y,z)∈Yℓ

Vℓ
t,x(y, z) < 0. (7.17)

There are two possibilities: The point (yℓ, zℓ) is in the open subset (Yℓ\Y )0 of
the set Yℓ\Y , or in the set

Y 0
ℓ = {(y, z) ∈ R

2 × R
2 ; y ∈ ∂Cℓ, z ∈ R

2}. (7.18)

We suppose that (yℓ, zℓ) ∈ (Yℓ\Y )0. As the point (yℓ, zℓ) is an absolute mini-
mum, then we have

∂

∂yj
Vℓ
t,x(y

ℓ, zℓ) =
∂

∂zj
Vℓ
t,x(y

ℓ, zℓ) = 0, j = 1, 2. (7.19)

By using the fact that

∀ α ∈ R+, (rαy
ℓ, zℓ) /∈ Yℓ,

and by applying the relations (7.7), (2.11), (2.12), (7.19), we get

{

k1(
1

1− e−〈α1,yℓ〉
−

1

2
) + 2k2

( 1

1− e−〈α3,yℓ〉
−

1

2

)

.

+k3

[( 1

1− e−〈α5,yℓ〉
−

1

2

)

+
( 1

1− e−〈α6,yℓ〉
−

1

2

)]}

Vℓ
t (y

ℓ, zℓ) = 0, (7.20)

{

k1

( 1

1− e−〈α2,yℓ〉
−

1

2

)

+ 2k2

( 1

1− e−〈α4,yℓ)
−

1

2

)

+k3

[

−
( 1

1− e−〈α3,yℓ〉
−

1

2

)

+
( 1

1− e−〈α6,yℓ〉
−

1

2

)]}

Vℓ
t (y

ℓ, zℓ) = 0, (7.21)

Using the fact that from (7.17) the function Vℓ
t,x(y

ℓ, zℓ) is different from zero
and that k3 > 0, the equations (7.20), (7.21) can also be written in the form

k1
k3
Xℓ

1 +
2k2
k3

Xℓ
3 +Xℓ

5 +Xℓ
6 = 0, (7.22)

k1
k3
Xℓ

2 +
2k2
k3

Xℓ
4 −Xℓ

5 +Xℓ
6 = 0, (7.23)

with

Xℓ
i =

1 + e−〈αi,yℓ〉

1− e−〈αi,yℓ〉
, i = 1, 2, ..., 6. (7.24)

Then the Xℓ
i , i = 1, 2, ..., 6, are solutions of the system (S) of linear equations

on R
4 :

(S)

{

k1
k3
X1 + 2k2

k3
X3 +X5 +X6 = 0,

k1
k3
X2 + 2k2

k3
X4 −X5 +X6 = 0.

(7.25)
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On the other hand from (7.24) we obtain

e−〈αi,yℓ〉 =
Xℓ

i − 1

Xℓ
i + 1

, i = 1, 2, ..., 6. (7.26)

We consider the function f defined on R\{−1} by

f(y) =
y − 1

y + 1
,

we have

f(y) ≤ 0 ⇔ y ∈]− 1, 1], (7.27)

0 < f(y) < 1 ⇔ y ∈]1,+∞[, (7.28)

f(y) > 1 ⇔ y ∈]−∞,−1[. (7.29)

From the relation (7.26), we have

e−〈αi,x
ℓ〉 = f(Xℓ

i ), i = 1, 2, ..., 6. (7.30)

As the first member of (7.30) is strictly positive, then from (7.27) the Xℓ
i ,

i = 1, 2, ..., 6, are not in the interval ] − 1, 1[. They are in the interval
]−∞,−1[∪]1,+∞[. We consider two cases.

1st Case:

1. If xℓ ∈ Cℓ, ℓ = 1.
From the relations (7.12), we have 〈αi, x

ℓ〉 > 0 for i = 1, 2, ..., 6. Then by
using (7.30), (7.28) we obtain

Xℓ
i ∈]1,+∞[, i = 1, 2, ..., 6. (7.31)

By applying (7.31) we get

k1
k3
Xℓ

1 +
2k2
k3

Xℓ
3 +Xℓ

5 +Xℓ
6 >

k1
k3

+ 2
k2
k3

+ 2 > 0.

Thus from (7.22) we obtain an absurdity, and then the Xℓ
i , i = 1, 2, ..., 6,

are not solutions of the system (S) given by (7.25).

2. If xℓ ∈ Cℓ, ℓ = 2.
From the relation (7.14),(7.15) we have 〈αi, x

ℓ〉 > 0 for i = 1, 2, 3, 4, 6 and
〈α5, x

ℓ〉 < 0. Then by using (7.30), (7.28), (7.29), we obtain

Xℓ
i ∈]1,+∞[, i = 1, 2, 3, 4, 6 and Xℓ

5 ∈]−∞,−1[. (7.32)

By applying (7.32) we get
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k1
k3
Xℓ

2 + 2
k2
k3
Xℓ

4 −Xℓ
5 +Xℓ

6 >
k1
k3

+ 2
k2
k3

+ 2 > 0.

Thus from (7.23) we obtain an absurdity, and then the Xℓ
i , i = 1, 2, ..., 6,

are not solution of the system (S) given by (7.25).

2nd Case: If xℓ ∈ Cℓ, ℓ = 3, 4.
The same proof as for the first case shows that when yℓ ∈ Cℓ, ℓ = 3, 4, we obtain
an absurdity, and then the Xℓ

i , i = 1, 2, ..., 6, are not solutions of the system (S)
given by (7.25).

From the first and second cases we deduce that our supposition that the
function Vℓ

t,x(y, z) attains a strictly negative absolute minimum at (yℓ, zℓ) in

(Yℓ\Y )0 is absurd. Then the point (yℓ, zℓ) does not belong to (Yℓ\Y )0, and it
is in the set Y 0

ℓ .

2nd Step

From Proposition 7.5 ii) the function Ut,x(y, z) is strictly positive on the set
Y .

We shall prove that the function Ut,x(y, z) is positive on the set R2×R
2\Y .

If not we suppose by using Proposition 7.5.i) and Proposition 7.4 iii) that it
attains a strictly negative absolute minimum at (y0, z0) ∈ R

2 × R
2\Y .

From the first step and the relation R
2 = ∪4

ℓ=1Cℓ, the point (y0, z0) is in
the set

Y 0 =

4
⋃

ℓ=1

Y 0
ℓ ,

with Y 0
ℓ given by (7.18). We have

Y 0 = {(y, z) ∈ R
2 × R

2 ;∀ α ∈ R+, 〈α, y〉 = 0, z ∈ R
2},

then

∀ α ∈ R+, 〈α, y0〉 = 0.

We shall prove in the following that the point (y0, z0) is not in the set Y 0.

As the point (y0, z0) is a strictly negative absolute minimum, then we have
the following relations

Ut,x(y0, z0) = inf
(y,z)∈R2×R2

Ut,x(y, z) < 0, (7.33)

and
∂

∂y1
Ut,x(y0, z0) =

∂

∂z1
Ut,x(y0, z0) = 0 . (7.34)
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We write the relations (7.6), (7.7), (2.11) for y, z0, and we get

∂

∂y1
Ut,x(y, z0) +

∂

∂z1
Ut,x(y, z0) + k1

{Ut,x(y, z0)− Ut,x(rα1
y, z0)}

1− e−〈α1,y〉

+2k2
{Ut,x(y, z0)− Ut,x(rα3

y, z0)}

1− e−〈α3,y〉

+k3

[Ut,x(y, z0)− Ut,x(rα5
y, z0)

1− e−〈α5,y〉
+
Ut,x(y, z0)− Ut,x(rα6

y, z0)

1− e−〈α6,y〉

]

= (
1

2
k1 + k2 + k3)Ut,x(y, z0).

(7.35)
Then by passing to the limit in (7.35), when 〈α, y〉, for all α ∈ R+, goes to
〈α, y0〉 = 0, and by using Proposition 7.6 and the relation (7.34), we obtain

(
1

2
k1 + k2 + k3)Ut,x(y0, z0) = 0.

As ki > 0, i = 1, 2, 3, then

Ut,x(y0, z0) = 0. (7.36)

Thus (7.33) and (7.36) imply a contradiction, and the point (y0, z0) is not in
the set Y 0.

Then the function Ut,x(y, z) is positive on the set R
2 × R

2\Y . We deduce
the relation (7.16) from this result and the fact that the function Ut,x(y, z) is
positive on the set Y . �

Theorem 7.9. Let t > 0 and x ∈ R
2. Then we have

∀ , u, y ∈ R
2, tTx(pt(u, .))(y) ≥ 0. (7.37)

Proof. We deduce (7.37) from the relation (7.4), the positivity of the
measure µ̆x given by (7.5) and Theorem 7.8. �

8. Positivity of the hypergeometric translation operator
and of its dual

Theorem 8.1. For all positive function g in E(R2), we have

∀ x, u ∈ R
2,Tx(g)(u) ≥ 0. (8.1)

Proof. - For x = 0: From the relation (5.2) we have

T0(g)(u) = g(u) ≥ 0.
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- For x ∈ R
2\{0}: We consider two cases.

1st Case: We suppose that the function g belongs to D(R2).
Let t > 0 and u ∈ R

2. From Proposition 6.2 i) the function z → pt(u, z) belongs
to S2(R

2). On the other hand by using the properties of the operators Tx and
tTx and the relations (5.6), (5.5), we obtain

∫

R2

Tx(g)(z)pt(u, z)Ak(z)dz =

∫

R2

g(y)tTx(pt(u, .))(y)Ak(y)dy.

As from (7.37) the second member of this relation is positive, then we have
∫

R2

Tx(g)(z)pt(u, z)Ak(z)dz ≥ 0.

By using (6.15) this relation can also be written in the form

Pt(Tx(g))(u) ≥ 0. (8.2)

As the function Tx(g) belongs to D(R2), then from Proposition 6.5 ii) we obtain

lim
t→0

Pt(Tx(g))(u) = Tx(g)(u) ≥ 0.

2nd Case: We suppose that the function g is in E(R2). Let ϕ be a positive
function in D(R2) radial such that supp ϕ ⊂ B(0, 2), ϕ(y) = 1 for all y ∈
B(0, 1), and for all y ∈ R

2, 0 ≤ ϕ(y) ≤ 1. We consider the increasing sequence
{ϕn}n∈N\{0} defined by

∀ y ∈ R
2, ϕn(y) = ϕ(

y

n
).

As the function gϕn belongs to D(R2), then from the first case, we have

∀ x, u ∈ R
2,Tx(gϕn)(x) ≥ 0. (8.3)

We obtain (8.1) by using (8.3) and the fact that the sequence {gϕn}n∈N\{0}
converges to the function g in E(R2), and the continuity of the operator Tx
from E(R2) into itself. �

Corollary 8.2. For all positive function f in D(R2) (resp. S2(R
2)), we

have
∀ x, y ∈ R

2, tTx(f)(y) ≥ 0. (8.4)

Proof. We deduce (8.4) from the relation (5.6) and Theorem 8.1. �

Theorem 8.3. There exists a σ-algebra m in R
2 which contains all Borel

sets in R
2, and for each x, u ∈ R

2, there exists a unique positive measure mx,u

on R
2 such that for every g in E(R2), we have
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Tx(g)(u) =

∫

R2

g(z)dmx,u(z). (8.5)

Proof.
First case: We suppose that the function g is in D(Rd). We obtain the results
from the relation (8.1) and Theorem 2.14, of [5], p.42.
Second case: We suppose that the function g belongs to E(Rd). As we have
g = g+ − g−, we suppose in the following that g is positive. We consider the
sequence {gϕn}n∈N, given in the proof of Theorem 8.1. From the relation (8.5),
for all n ∈ N and x, u ∈ R

d, we have

Tx(gϕn)(u) =

∫

Rd

g(z)ϕn(z)dmx,u(z). (8.6)

By making a proof analogue to the proof given in the 2nd case of the proof of
Theorem 8.1, we obtain

∀x, u ∈ R
d, lim

n→∞
Tx(gϕn)(u) = Tx(g)(u). (8.7)

On the other hand by using the fact that the sequence {gϕn}n∈N is positive
and increasing, then from the monotone convergence theorem, we have

∀x, u ∈ R
d, lim

n→∞

∫

Rd

g(z)ϕn(z)dmx,u(z) =

∫

Rd

g(z)dmx,u(z). (8.8)

We deduce (8.5) from the relations (8.6),(8.7),(8.8). �

Remark 8.4. By using the relations (5.6), (8.5), we obtain for all f
in D(R2) and u, y ∈ R

2 the following integral representation of the function
tTu(f)(y):

tTu(f)(y) =

∫

R2

f(z)dm̌y,−u(z). (8.9)

where m̆y,−u is the positive measure on R
2 given by

∫

R2

f(z)dm̆y,−u(z) =

∫

R2

f(−z)dmy,−u(z). (8.10)

Corollary 8.5. The product formula (5.3) can also be written in the form

∀ x, u ∈ R
2, ∀ λ ∈ C

2, Gλ(x)Gλ(u) =

∫

R2

Gλ(z)dmx,u(z). (8.11)

Proof. We deduce the relation (8.11) from Theorem 8.3 and the fact that
for all λ ∈ C

2, the function Gλ(x) belongs to E(R2). �
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Corollary 8.6. For all x, u ∈ R
2, we have

‖mx,u‖ = mx,u(1) = 1. (8.12)

Proof.
- We prove first that

∀x ∈ R
2, G−iρ(x) = 1. (8.13)

From the relations (2.9), (2.13) the function f(x) = G−iρ(x) is the unique
solution satisfying f(0) = 1 of the system

∂

∂xj
f(x) +

∑

α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} = 0, j = 1, 2, x ∈ R

2. (8.14)

But, the constant function f(x) = 1 is also a solution of this system. Thus we
obtain (8.13) from the unicity of the solution of the system (8.14).

- We obtain (8.12) by taking λ = −iρ in the relation (8.11) and by using
(8.13). �

Corollary 8.7. The Cherednik-Opdam kernel Gλ(x) admits the following
estimate

∀ λ ∈ R
2, sup

x∈R2

|Gλ(x)| = 1. (8.15)

Proof. From the relations (8.11), (2.18), for all λ ∈ R
2, we have

(

sup
x∈R2

|Gλ(x)|

)(

sup
u∈R2

|Gλ(u)|

)

≤

∫

R2

(

sup
z∈R2

|Gλ(z)|

)

dmx,u(z).

Thus by applying (8.12) we get

sup
x∈R2

|Gλ(x)| ≤

∫

Rd

dmx,u(z) = 1.

We deduce (8.15) from this relation and (2.13). �

Proposition 8.8. For all x, u ∈ R
2, we have

suppmx,u ⊂ {z ∈ R
2 ; |‖x‖ − ‖u‖| ≤ ‖z‖ ≤ ‖x‖+ ‖u‖}. (8.16)

To prove this proposition we need the following lemma.

Lemma 8.9. Let x, u ∈ R
2 and f be in D(R2). if the support of f is

contained in the closed ball B(0, |‖x‖ − ‖u‖|), we have

Tx(f)(u) = 0. (8.17)
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Proof. Set η = |‖x‖ − ‖u‖|. Since by the relation

Tx(f)(u) = Tu(f)(x),

we may suppose that ‖x‖ ≤ ‖u‖. Let y = η + ‖x‖σ, with σ is a point of the
unit sphere S1 of R2. �

From (5.6), (5.10), we deduce that

Tx(f)(y) = 0.

By replacing η by its value in y, we obtain y = ‖u‖σ. Thus,

Tx(f)(u) = 0.

�

Proof of Proposition 8.8.
For all x, u ∈ R

2, the relation (8.11) can also be written in the form

∀ λ ∈ C
2,H(mx,u)(λ) = Gλ(x)Gλ(u), (8.18)

where H is the hypergeometric Fourier transform of the measure mx,u which is
of compact support (see [8], p.32).

On the other hand from the relation (2.22), (2.19) there exists a positive
constant M0 such that

∀ λ ∈ C
d, |Gλ(x)Gλ(u)| ≤M0e

(‖x‖+‖u‖)‖Imλ‖,

thus (8.18) implies

∀ λ ∈ C
2, |H(mx,u)(λ)| ≤M0e

(‖x‖+‖u‖)‖Imλ‖.

From this relation and Theorem 2.4 of [8], we deduce that

suppmx,u ⊂ B(0, ‖x‖ + ‖u‖). (8.19)

We obtain (8.16) from Lemma 8.9 and (8.19). �

9. Positivity of the hypergeometric translation operator and its dual
associated with the Heckman-Opdam theory

We have defined and studied in [9] the transmutation operator V W
k and its

dual tV W
k associated with the Heckman-Opdam theory defined respectively on

E(R2)W , D(R2)W and S2(R
2)W (the subspaces respectively of E(R2), D(R2)

and S2(R
2) which are W-invariant). In this section we give the definition and

the properties of the hypergeometric translation operator T W
x , x ∈ R

2, and we
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deduce from the results of the section 8, that it satisfies the analogue of the
relation (8.1) and its consequences.

The hypergeometric translation operator T W
x , x ∈ R

2, associated with the
Heckman-Opdam theory, is defined on E(R2)W by

∀ y ∈ R
2,T W

x (f)(y) = (V W
k )x(V

W
k )y[(V

W
k )−1(x+ y)]. (9.1)

The dual tT W
x , x ∈ R

2, of the operator T W
x , x ∈ R

2, is defined on D(R2)W

(resp. S2(R
2)W ) by

∀ y ∈ R
2, tT W

x (f)(y) = T W
y (f)(−x). (9.2)

The main properties satisfied by the operator T W
x , x ∈ R

2, are the following:

1. For all x ∈ R
2, the operator T W

x is continuous from

- D(R2)W into itself.

- S2(R
2)W into itself.

2. For all x, y ∈ R
2 and λ ∈ C

2, we have the product formula

T W
x (Fλ)(y) = Fλ(x)Fλ(y) (9.3)

for the Heckman-Opdam hypergeometric function Fλ(x) defined by (2.14).

3. For all f in D(R2)W (resp. S2(R
2)W ) and x, y ∈ R

2, we have

T W
x (f)(y) =

∫

R2

Fλ(x)Fλ(−y)H
W (f)(λ)CW

k (λ)dλ, (9.4)

where
CW
k (λ) = c|Ck(λ)|

−2,

with c a positive constant chosen in such a way that CW
k (−ρ) = 1, |Ck(λ)|

−2 the
function given by (4.4), (4.5), and HW the hypergeometric Fourier transform
associated with the Heckman-Opdam theory defined on D(R2)W (resp. S2(R

2))
by

∀ λ ∈ R
2,HW (f)(λ) =

∫

R2

f(x)Fλ(x)Ak(x)dx. (9.5)

By using the results of Section 8, we deduce the following results.

Theorem 9.1. For all x, u ∈ R
2 and g in E(R2)W we have

T W
x (g)(x) =

∫

R2

g(z)dmW
x,u(z), (9.6)

with
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mW
x,u =

1

|W |2

∑

w,w′∈W

mwx,w′u, (9.7)

where mx,u is the measure given by (8.5).

Proposition 9.2.

i) The product formula (9.3) can also be written in the form

∀ x, u ∈ R
2,∀ λ ∈ C

2, Fλ(x)Fλ(u) =

∫

R2

Fλ(z)dm
W
x,u(z). (9.8)

ii) For all x, u ∈ R
2, we have

‖mW
x,u‖ = mW

x,u(1) = 1. (9.9)

iii) For all x, u ∈ R
2, we have

suppmW
x,u ⊂ {z ∈ R

2 ; |‖x‖ − ‖u‖| ≤ ‖z‖ ≤ ‖x‖+ ‖u‖}. (9.10)

Proposition 9.3. The Heckman-Opdam hypergeometric function Fλ(x)
admits the following estimate

∀ λ ∈ R
2, sup

x∈R2

|Fλ(x)| ≤ 1. (9.11)
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