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Abstract: As many numeric simulations are mesh based approaches, a domain
decomposition into triangular elements is a essential process in order to produce
a good representation of the target domain. But, many methods were proposed
and the commonly used approaches have different behaviors depending of the
domain to mesh. Convex domains are easier to form good triangulations by
most methods because of the well formed borders, but non-convex domains
may be a problem to represent correctly. This paper performs a qualitative
analysis of two known triangulation methods, the Ruppert and Force Balance
refinement methods. We present some results of mesh refinement for non-convex
domains by testing the minimal restriction angle.
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1. Introduction

Finding an appropriated domain discretization is essential to the quicker con-
vergence of a numeric simulation. In this discretization, generally known as
a triangulation, a series of equations describing physical laws must be solved.
There was some proposed triangulation methods in literature, but most of them
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were build to work mainly on exact models, usually generated by CAD systems.
In this situations the generated triangulation must be corresponded exactly to
the border limits of the the original model, because specific details can not be
lost in representation.

Starting on the 80’s, mesh generation techniques were proposed such as De-
launay triangulation, Mesh Propagation and Quadtrees/Octrees. A Quadtree
algorithm consists in recursively dividing a quadrilateral which contains the
geometry until hitting the desired solution. The Mesh Propagation algorithm
is based on the building of triangles at the border of the geometry and progres-
sively heading to the surface center. But, the most popular of those techniques
– the Delaunay Triangulation, consists on creating elements on a way that does
not exist a vertex of a polyhedral that is inside of the circumscribed sphere of
another polyhedral, [6].

After the mesh generation, many times it is necessary to refine them by
including a set of well posed internal points. One of the first refinement tech-
niques consisted on connecting the barycenter of the element to its vertexes
building new elements. However, the generated mesh was not quality guaran-
teed. Another technique that produced satisfactory results was introduced by
Hermeline [5], proposing to refine the imperfections by calculated points though
weights.

Many other methods were proposed in order to reduce the mesh errors
through refinements to guarantee good elements. Some of these techniques can
be seen in works of Chew [1],[2], Frey [4], and Shewchuk [11]. Most surged
techniques for the mesh generation in literature derived from the Delaunay
agorithm [3], [8], [9], [10]. However, the Delaunay algorithm have the property
to maximize the smaller angle of the triangles making it very popular among
researchers. The purpose to raise the smaller element angle is to remove the
thin triangles, increasing the mesh quality, because bad quality elements lead
to a loss in results precision.

Tools were developed by applying the Delaunay algorithm, such as the
Triangle as one of the most cited [10]. The employed algorithm is adapted
from the works of Chew [3] and Ruppert [8, 9] and does not need a previous
processing at the border. Points are added during the refinement process to
preserve the domain accordance. The resulting mesh is usually consisted of few
elements and triangles preserves quality.

This paper investigates the Delaunay triangulation with Ruppert refine-
ment, by also applying the Force Balance method dealing with cases where
initial polygons presents very acute angles. Therefore, we investigated the ad-
vantages and disadvantages of each method for non-convex domain cases.
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The structure of this paper is the following. Section 2 presents the back-
ground concepts of the Delaunay algorithm; Section 3 presents the mesh re-
finement algorithms used in this work, including Ruppert and Force Balance
method; Section 4 presents the numeric results achieved in experiments and
Section 5 draws conclusions about the obtained results.

2. Delaunay Algorithm

The general idea of the Delaunay refinement algorithms is to modify an initial
triangulation by adding new points to improve the mesh quality. Every triangle
must keep its circumscribed circle (circumcircle) empty, i.e., no other points
can be inside it. The quality of the generated triangle is evaluated by the ratio
between the circumscribed circle radius r and the shortest edge l, as can be
seen in Figure 1. The ratio r/l is directly associated to the smallest angle θ of
the triangle.

Figure 1: a) A triangle ∆abc circumscribed circle centered at d,
where θ is the triangle smallest angle, l its smaller edge, and r the
circle radius. (b) The two isosceles triangles ∆adb e ∆adc.

According to the Figure 1, we can derive that ∠bdc = 2θ. Following, let
α = ∠cad, we have

∠adb = 1800 − 2(θ + α) (1)

and

∠adc = 1800 − 2α (2)
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as ∆adb and ∆adc are isosceles and subtracting (1) of (2), we have that ∠bdc =
2θ. Note that senθ = l

2r , consequently, for r/l ≤ L the minimal angle θ cannot
be greater than arcsen 1

2L . A triangle with ratio greater than the limit L is
called of thin triangle.

The main operation in the Delaunay refinement is the insertion of a point
at the triangle circumcenter in order to improve the mesh quality. In order to
remove the thin triangles of the mesh, a new vertex is inserted at the circumcen-
ter. After each operation the mesh edges must be remade. As the circumcircle
of any triangle must remain empty in a Delaunay triangulation, by inserting the
each new vertex the associated triangle is eliminated from the mesh. Moreover,
no new edge will have smaller width than the circumradius. The process is
repeated until no triangle have ratio greater than L.

3. Bidimensional Delaunay Refinement Algorithms

In this section are presented the Ruppert and the Force Balance algorithms.
Some algorithms build the Delaunay triangulation with a posed restriction, thus
not being limited to an entry composed of only vertexes. The restriction occurs
when the entry also presents edges that must be preserved in the final mesh.
Those entry data are known as planar straight line graph (PSLG).

3.1. The Ruppert Refinement Algorithm

The refinement algorithm of Jim Ruppert [9] is employed for the generation
of bidimensional meshes with a satisfactory level of quality with an iterative
method based on Delaunay triangulation concepts. A segment is called wrapped
when the diameter calculus contains some vertex that its not one of the vertexes
that define the main segment. The diameter circle is the smallest possible circle
that contains the segment. Figure 2 shows an example of a wrapped segment s
by vertex v.

In order to generate a triangulation regarding the limit L, the cases of
wrapped segments and thin triangles must be processed. A wrapped segment
is divided by adding a new vertex in its center point. A thin triangle is usually
eliminated by adding a new vertex in its circumcenter. However, if the new
vertex generate one or more wrapped segments, instead of add them, all those
segments that would be wrapped are divided.

Ruppert has proven that for a limit L =
√
2, the algorithm have the con-

vergence guarantee. The limit L ≥
√
2 generate a triangulation with angles
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between 20.70 and 138.60. However, this guaranty is only valid for polygons
with minimal angle of at least 900. Shewchuk [11] has proven that this restric-
tion can be reduced to 600.

For angles smaller than 600 the algorithm usually not generate well formed
triangles, specially near small angles from entry set. Moreover, Shewchuk [11]
shows that in some cases, the refinement algorithms of Delaunay could not
complete when there are small angles in polygons. Figure 3 illustrate one of
the generated problems by small angles of the polygon, particularly when there
is any less than 450. The segment qr is wrapped by the vertex p. Then qr is
divided by inserting a new vertex s in its center point. However, the segment
qp will be wrapped by the new vertex s, and also must be divided. Following,
the segment qs will be wrapped by the new vertex and also will be divided.
This process can continue and the algorithm may not converge.

Figure 2: The segment s is wrapped by vertex v which is inside its
diameter circle.

The Ruppert approach creates concentric circles around each vertex of the
entry set. Each circle has the double of the radius of the most internal circle,
where all radius are in power of 2. When dividing a segment, where one of the
extremes is an entry vertex, the segment is divided in the intersection with the
closer circle (not the center point as before). Figure 4 illustrates the Ruppert
method. Eventually, the segments separated by a small angle will be divided
with same sizes. As segments with equal sizes does not wrap each other, division
loop does not happens. The algorithm 1 illustrates the steps necessary to do
the refinement.
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Figure 3: Illustration of a problem caused by small angles of a poly-
gon. As any vertex inserted turns some segment wrapped, the algo-
rithm keeps dividing edges.

Figure 4: When the segment pr is subdivided, instead of use the
mean point m1, the point v1 in the closer circle is used. Analogously,
the segment pq is subdivided at point v2. The subdivided segments
pv1 e pv2 have the same size, and then v1 does not wrap pv2 neither
v2 on pv1.

3.2. Force - Balance Method

An alternative method of adaptive mesh generation was proposed by Per-Olof
Person et al. [7]. The domain to be triangulated is defined though an implicit
continuum function f(x, y). Such function can be also combined to form more
complex domains through union, intersection and subtraction operations. The
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Algorithm 1 Rupert refinement algorithm

Require: G← PSLG
Require: α : minimal quality
1: Generate Delaunay triangulation T for vertexes in G
2: while exists an encroached segment s ∈ G do

3: Split s by inserting a midpoint
4: Update G and T
5: end while

6: while exists some triangle t ∈ T with quality q where qt < α do

7: Let p the circumcenter of t
8: Identify segments s1, s2, . . . , sk encroached by p
9: if k ≥ 1 then

10: Split segments s1, s2, . . . , sk inserting the k midpoints
11: Update G and T
12: else

13: Add p
14: end if

15: end while

main concept of the method is the modeling of the mesh as a spring structure.
The mesh vertexes are the connecting nodes while the edges are the springs
connecting nodes. Each spring presents an associated force that provides ei-
ther its stretching or shrinking. Considering a spring set, the attractive and
repulsive forces sum into a resulting vector force in the structure and, in each
iteration, the system is solved for the balance. The spring forces move nodes
by distributing them in the domain.

Each vector has horizontal and vertical components for each mesh vertex,
being constituted of internal forces from springs and external forces from border
reactions, as can be seen in the equation below:

F (p) = [Fint,x(p), Fint,y(p)] + [Fext,x(p), Fext,y(p)] . (3)

The forces depend directly of the topology of springs structure. This topol-
ogy is obtained through a Delaunay triangulation, which is generated based on
the entry points. Note that the force vector F (P ) is not a continuum function
over p seen that the topology can be changed by the Delaunay triangulation
according with the node points positions. The system F (p) = 0 must be solved
for a set of a equilibrium position set p. A simple approach for the solution of
this problem is to consider an artificial temporal element. For some p(0) = p0
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we consider a differential equation system:

dp

dt
= F (p), t ≥ 0. (4)

If a balance situation is found, the solution for the differential equation 4 will
be a solution for the system F (p) = 0. The system 4 can be approximated
through the Euler method. At the time tn = n∆t the approximated solution
pn ≈ p(tn) is updated through the following equation

pn+1 = pn +∆tF (pn). (5)

During the evaluation of the force F (p), the points position pn are known as the
structure topology, due to the Delaunay triangulation of the initial points set.
The external reaction forces are handled in the following manner. All points
that are moved outside the domain during the positions update of pn for pn+1

are re-positioned back to the closer border point. The points can be moved
along the border but never outside it.

The force function is modeled in a manner to allow only repulsive forces,
not allowing the attractive forces, where the constant k has a role on the unity
correction. The force function is then given by

f(l, l0) =

{

0, l ≥ l0
k(l0 − l), l < l0

. (6)

The border treatment in this method aim at spreading the points along the
domain. For that to happen, it is important that there are repulsive forces
f > 0. This means that the function f(l, l0) must be positive when l is close
to the desired edges width, and it can be done by the choice of a width l0 a
little higher than the desired. The edges width is given to the method through
a width function h(x, y). The function h(x, y) does not represents the absolute
width of an edge but its relative width, and in this way it can be avoided an
implicit relationship between the number of nodes and the edges width. Due
to the relative nature of the edges width through the function h(x, y), it is
considered a scale value, evaluated as follows:

S =

√

∑

l2i
∑

h(xi, yi)2
, (7)

where li is part of the collection of all edges.
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Algorithm 2 Force- Balance Method

1: Create initial distribution of points in the bounding box of domain
2: Remove points outside of domain
3: Perform an initial Delaunay triangulation
4: while moving points still achieves bad quality do

5: if there was considerable points movement then
6: Save old points positions
7: Perform Delaunay Triangulation of the points
8: Evaluate the triangle centroids
9: Remove triangles outside of the domain

10: end if

11: Evaluate the current edges width
12: Evaluate the desired widths
13: Evaluate the forces vector
14: Apply the forces and update the points positions.
15: Bring outside points to domain inside
16: end while

4. Numeric Results

Basing on the presented methods, it is possible to establish qualitative compar-
isons between them, allowing to discover the advantages and disadvantages from
any method to another. We will present in this section a qualitative comparison
between the presented methods.

Figure 5: Acute angle domain.

First, a comparison was made based on two
mesh files, allowing to observe the precision
and quality ofeach method. Figure 5 presents
the domain of the first mesh with an acute an-
gle in one of its borders. Both methods gen-
erated the mesh correctly, but the Ruppert
method took around two seconds for 1507
points, once the force balance method took
a greater time in the order of minutes, due

to the need of a new Delaunay mesh each time the points move. Therefore,
more than half of the time spent for the force balance method was due to the
successive Delaunay triangulations, performing 3646 at total with 1461 points.
The result meshes generated by both methods can be seen in Figures 6(a) and
6(b).
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The quality of the generated triangles was evaluated by verifying the angles
in triangles. Therefore, a histogram was evaluated with the distribution of
angles in each resulting mesh, as can be seen in Figures 7 and 8. The mesh
generated by the Ruppert method present angles that vary from 25 to 119
degrees. We can observe that the major concentration in the histogram is
between 50 and 60 degrees, followed by smaller concentrations between 40 50
degrees and between 60 and 70 degrees. These results show that the mesh
present a good quality relationed to angles. As higher the concentrations of
angles next to 60 degrees, the better is the shape of the triangles. In this case,
the Ruppert method was executed with an additional parameter guaranteeing
the mesh quality with a minimal angle of 30 degrees. The mesh generated by
the force balance method has minimal angle of 32 degrees and maximal angle
of 105 degrees, being those values in a smaller interval when compared with the
angles produced by the Ruppert method, showing a better quality of the mesh
in general. The concentration of angles in the interval of 50 and 60 degrees is
considerably higher than in the Ruppert results.

Based on these results, it can be concluded that the force balance method,
besides more computationally expensive, generated better results when consid-
ering non convex domains and had no need of a special treatment for acute
angles in the domain when compared to the Ruppert method. It is important
to consider that the mesh contains similar number of elements, 2838 triangles
for the Ruppert mesh and 2794 triangles for the force balance mesh.

(a) (b)

Figure 6: a) Ruppert generated mesh, b) Force balance generated
mesh.
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Figure 7: Angles histogram distribution for the mesh generated by
the Ruppert method.

Figure 8: Angles histogram distribution for the mesh generated by
the Force Balance method.
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In the second experiment, a domain that is defined by four acute corners,
as can be seen in Figure 9. The generated mesh by Ruppert and Force Balance
methods can be seen in Figures 10(a) and 10(b), respectively.

Figure 9: Mesh Domain 2.

The Ruppert method generated the mesh in
a time around two seconds for 1050 points.
The Force balance method spent 75 seconds
to generate the mesh, with the Delaunay re-
construction consuming half of the total spent
time, with 600 iterations for 1453 points. The
generated Ruppert mesh has a minimal angle
around 22 degrees and a maximal angle of 116
degrees. In this experiment, it was also used
a parameter guaranteeing a minimal angle of 30 degrees. The Force Balance
generated mesh has minimal and maximal angles of 28 and 112 degrees, respec-
tively. It can be seen again that the values for angles are in an interval smaller
than those in Ruppert results for non convex domains.

Figures 11 and 12 show the histogram of the angle distribution. It can
be seen that the major concentration of angles are between 50 and 60 degrees,
followed by smaller angles between 40 – 50 degrees and 60 – 70 degrees, revealing
the good mesh quality. Those angles are 26.3% of all angles in Force Balance
method, while they are 23.6% in Ruppert’s. On the other hand, in this iteration
the Force Balance method had a higher number of triangles with angles between
20 and 30 degrees when comparing with the Ruppert method. However, the
generated mesh by the Force Balance method has a smaller minimal angle and
a higher maximal angle, when compared with Ruppert method.

It can be concluded that the generated mesh by Force Balance method is
slightly superior in terms of quality with relation to the generated mesh by
the Ruppert method. This is due to the smaller interval between the smaller
and the greater angle degree, which reflects in the shape of the triangles gener-
ated. The spent time is higher when comparing to Ruppert, demanding more
computational power.

5. Conclusion

In this paper we performed a qualitative analysis of two known triangulation
methods, the Ruppert and Force Balance refinement methods, specifically on
mesh refinement for non-convex domains and testing the minimal restriction
angle.
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(a) (b)

Figure 10: a) Mesh generated by Ruppert method, b) Mesh gener-
ated by Force Balance method. Case 2.

Figure 11: Angles histogram distribution for the mesh generated by
the Ruppert method. Case 2.

The Ruppert method provides an alternative to the problem of applications
where there is a need of refinement in specific parts of the domain. This alterna-
tive has as base the creation of a mesh less uniform and with variable density.
In the boundaries the elements are smaller, following the typical irregularity
wanted. This type of behavior can offer advantages with relation to numeric
simulations that are focused in the behavior next to the borders. However, the
internal parts of the domain or portions that are close to the border will have a
refinement with greater elements, then reducing the precision in those regions.



772 F.P.B. Pola, I.R.V. Pola

Figure 12: Angles histogram distribution for the mesh generated by
the Force Balance method. Case 2.

The Force Balance method is a interesting approach in this case because uses as
a basis a physical analogy with a spring balance system, where the springs are
the edges in the mesh connecting vertexes. Although having a higher compu-
tational complexity, the Force Balance method produced better quality meshes
when dealing with non convex domains.
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