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Abstract: The system of gas dynamic equations governing the motion of
one-dimensional unsteady adiabatic flow of a perfect gas in planer, cylindrical
and spherical symmetry is solved successfully by applying the Adomian decom-
position method under the exponential initial conditions. The solution of the
system of equation is computed up to the five components of the decomposition
series. The variation of the approximate velocity, density and pressure of the
fluid motion with position and time is studied. It is found that there exists
discontinuity or shock wave in the distribution of flow variables. The solution
of system of gas dynamic equations by Adomian decomposition method is con-
vergent for a domain of position and time. The decomposition method provides
the variation of flow-variables with position and time separately which was not
possible in similarity method.
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1. Introduction

The conservation laws for the motion of a gas in its mathematical formulation
is written as a system of gas dynamic equations for mass, momentum and
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energy. This system of gas dynamic equation is complemented by the equation
of the state of the gas. The solution of the system of one-dimensional unsteady
gas dynamic problem under the suitable initial condition is an important field
of study. The solution of the system of gas dynamic equations are studied
in literature and is solved by the different methods. One of the important
and widely used method to solve the equations is similarity method but it
needs the much computational work, knowledge of geometrical aspects of the
problem and give solution in term of similarity variable, not in term of space
and time variables directly, [1]. Recently, considerable amount of research work
has been invested in applying the Adomian decomposition method to a wide
class of linear and non-linear ordinary and partial differential equation as well
as integral equation [2, 3, 4, 5, 6, 7, 8, 9, 10]. The Adomian decomposition
method was introduced and developed by George Adomian [11]—[12] and is well
addressed in the literature. This method has been used in the solution of scalar
gas dynamic equation [13] — [14]. The system of gas dynamic equation has been
solved by the Adomian decomposition method in two dimension for polytropic
gas [15]. But the system of gas dynamic equations for the unsteady adiabatic
flow of a perfect gas in one dimension for all the three type of symmetry namely
planer, cylindrical and spherical has not been studied.

In the present work, we have solved the system of non-linear one-dimensional
unsteady gas dynamic equations for adiabatic flow of a perfect gas in all the
three symmetry under the variable initial condition by applying the Adomian
decomposition method [12], [16] and [17]. The convergence and accuracy of the
solution is discussed. The variation of flow-variables with position and time is
presented which show that there exist a discontinuity or shock wave in the flow
field. All the computations are performed using Mathematica 9.

2. Basic equations and initial conditions
The system of gas dynamic equations governing the motion of a one-dimensional
unsteady adiabatic flow of a perfect gas in planer, cylindrical and spherical
symmetry is given by [1]

—_— —_— p— 1
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%(W)ﬂLU 87“’(177) =0, (3)

where v, p/ and p’ are the velocity density and pressure respectively at position
7 and time ¢, v is adiabatic exponent, v is symmetry parameter which takes
the values 1, 2 and 3 for the planer, cylindrical and spherical symmetry. The
initial conditions for the motion is taken as

/ ’

’o - ’o - o p0u2 —3,
U(Tao):uoelo70(7"70):00610717(7”70):_—0@ fo ) (4)
where 0 < r < 00, t > 0 and ly, ug and pg are dimensional constant. The
initial condition is consistent with the equation of motion (1). The equation
of state for the perfect gas is p = p RT where R and T are gas constant
and temperature respectively. The technique to make the above equations
dimensionless consists of introducing a simple change of variables t = tot,
r = lor, u = UQU, pl = pop and p/ = pou%p, where t/, r/, u/, p/ and p/ are the
original dimensional variables, t, r, u, p and p are corresponding dimensionless
variables, and tg, ly, ug and pg are characteristic time, characteristic length,
characteristic velocity and characteristic density. Under the transformation the
equations of motion of one-dimensional unsteady adiabatic flow of a perfect gas
in planer, cylindrical and spherical symmetry reduces as

ou ou 1@_

ap ap ou pu
d ., p J . p,

and the initial conditions in non-dimensional form become
u(r,0) =e™", p(r,0)=e", p(r,0)=—(1/3)e™", (8)

taking the Strouhal number S = ly/uptg = 1 to consider the transient process.
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3. Basic idea of Adomian decomposition method

In Adomian decomposition method, we consider the partial differential equation
in an operator form

Lu+ Ru+ Nu =g, 9)
where L is highest order linear operator which is assumed to be invertible and
R is linear operator of order less than order of L, N is non-linear operator and
g is a source term. We apply the inverse operator L™! to both sides of equation
(9) and using the given condition, we obtained

u=f— L YRu) — L™YNu), (10)

where the function f represents the terms arising from integrating the source
term ¢ and using the given condition, all are assumed to be prescribed. The
standard Adomian decomposition method suggests the solution u in form of
infinite series of the components, given by

=3 u. (1)
n=0

where u,,, n > 0 are components of u. The non-linear operator N is decomposed
in series form

N=3 4, (12)
n=0

where A,, are called Adomian polynomials. The aim of decomposition method
is to determine the components ug, u1, us...; recursively and elegantly. The Ado-
mian polynomials can be generated for all form of non-linearity [18] — [19]. The
Adomian polynomials A,, are generated according to the algorithms previously
published in [19] and standard Adomian decomposition scheme introduced in
[12] — [20]. On substituting Eq. (11) into Eq. (10) we get

> tn=f—-LNRY uy) = LTHND uy). (13)
n=0 n=0 n=0

Following the Adomian analysis in Eq. (13), the non-linear partial differential
Eq. (9) with the condition is transformed into a set of recursive relations

uy = f, (14)
upy1 = —L 7N (Rug) — LY (Nug); k> 0. (15)

From Egs. (14) and (15), by putting the components u,, n > 0 in Eq. (11) the
solution u is obtained readily.
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4. Solution of the system of gas dynamic equations

Firstly we eliminate dp/0t in Eq. (7) by using Eq. (6) then we write the basic
Egs. (5), (6) and (7) in the following operator form

Liu+uL,u+ (1/p)L,p =0, (16)
Lip +uLyp+ pLyu+ (v — 1)pu/r =0, (17)
Lip +ypLru +uLyp +y(v — 1)pu/r =0, (18)

where L; and L, are the partial differential operators given by L; = 9/0t and
L, = 0/0r. Then following the standard Adomian method, Egs. (16)-(18) can
be written as

u(r,t) = e " — Ly H(uur) — Ly (pr/p), (19)

p(rt) =e " — L (upy) — L ' (pur) — (v = 1)Ly (pu/r), (20)
__,—3r

p(rt) = —— =Ly (pur) = L (upr) = (v = DL (pu/r). (21)

Let us assume the solution u, p and p of the Eqgs. (16)-(18) in the form of
decomposition series as

u(r,t) = un(r,t), (22)
n=0

p(’l”, t) - Z Pn (’I”, t)v (23)
n=0

p(rt) =Y pa(rt). (24)
n=0

The non-linear term wuu,, p./p, upy, pu,, pu, and up, in Egs. (19)—(21) is
expressed in series form as
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00 00
up, = Z An, puy = Z B,, (25)
n=0 n=0
o0 » o0
=2 Cn =3 Du, (26)
n=0 P n=0
o0 o0
pu, = ZEna upr = ZFna (27)
n=0 n=0

where A,,, By, Cyn, Dy, E, and F,, are Adomian polynomials. Substituting Egs.
(22)—(24) and (25)—(27) into both sides of Egs. (19)-(21) we find

Sty = = L' (32 Co) = LY Do), (28)
n=0 n=0 n=0

an(r,t) =e ' - Lgl(z Ap) — L;I(Z By)
n=0
(v—1)L Z Pn Z Up)/ (29)

D palrt) = —e/3 - ’VLJI(Z En) - L;%Z F,)
n=0

Following the decomposition method in Eqgs. (28)—(30) we obtained the recur-
sive relation for gas dynamic Eqgs. (16)—(18) in an operator form as

uo(r,t) =e™ ", (31)
ui(r,t) = —L; ' (Co) — L; *(Do), (32)

war(r,t) = ~L; ' (Cy) — L (Dy), (33)
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polryt) =7, (34)

pi(rt) = =Ly (Ao) — Ly (Bo) — (v — 1)Ly (pouo /7), (35)
pr1(r,t) = =Ly (Ap) = L (By) — (v = DLy (prun/7), (36)
po(r,t) = —e= /3, (37)

pi(ryt) = —vLy ' (Eo) — Ly ' (Fo) = (v = 1)L (pouo/r), (38)
P (rt) = =Ly (By) — Ly (Fy) — (v — D)Ly (prun/r), (39)

where k > 1.

We can obtain the solution of gas dynamic equations from recursive Egs.
(31)—(39) in series form provided the Adomian polynomials are known. The
Adomian polynomials are calculated as follows:

&)
ZAn:upr:(u0+ul+u2+u3+“‘+)
n=0

X(p0r+p17‘+p27‘+p3r+"'+)a

we now, compare the term with subscript of same order from both side of above
equation, then Adomian polynomial A,, is given by

A, = Zukp(n_k)r, n=20,12..

k=0

Similarly, we can obtain Adomian polynomial B,,, Cy,, F,, as

n
Bp=> prtign_pyr, n=0,1,2...
k=0

n
C, = Zukum,k)r, n=20,1,2..
k=0
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n
Fn = Zukp(nfk)ra n = 0, 1, 2.
k=0

and,

P po+p1+p2+p3+---

iDn:pT (p0r+p1r+p2r+p3r+”')
n=0

so, comparing the term with subscript of same order from both sides of above
equation, we get

Do = Zﬁ’
Po
Dy = _p0r2p1 I IE’
Po Po
2
Dy = _P0r2,02 4 pOTgpl _ P1r2pl I ]ﬁ’
Po Po Po Po
3
_ DPorP3  DPorPi | 2PorP1pP2 | P3r  PorP1  P1rpP2
Dy=——5=——7+ - Eel S R
Po Po Po Po Po Po

and so on. Similarly we can write F, also. Using the Adomian polynomials
A, By, Cy, Dy, E, and F, into the recursive relations (32)—(33), (35)—(36)
and (38)—(39), we can compute the components of the velocity, the density and
the pressure and then the solution wu(r,t), p(r,t) and p(r,t) of gas dynamic
equations are given by the Eqgs. (22)—(24).

5. Result and Discussion

The distribution of flow variables in the flow-field is calculated by the Eqgs. (22)-
(24) for v = 1.4 and v = 1,2, 3 for planer, cylindrical and spherical symmetry.
For each case of symmetry, the five components of the velocity, density and
pressure are computed from the recursive Egs. (31)—(39) and approximate
velocity, density and pressure are given in form of tables and figures.

5.1. The velocity components for planer symmetry v = 1 are computed as
follows:
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ug =e ',

up = 0,

uy = (—2.93333e 73" 4+ e 1712,

uz = (—6.93332¢ ™" 4 1.66667¢"")t?,

uy = {(—8.14682 + 0.78222r)e ™" 4 (2.96111 — 0.31111r)e~ %"},

and so on. Therefore, the velocity u is given by putting the value of ug, u1,
Ug, U3, Ug -+, in to the Eq. (22). For numerical computation we truncate the
series after five term and the approximate velocity ®5,, is given by

4
Oso = un=e" 40+ (-2.93333¢™ + )2
n=0

+(—6.93332¢ 74" 4 1.66667¢ " )t> + {(—8.14682 4 0.78222r)
+(2.96111 — 0.311117)e 57 }¢1.

The approximate velocity ®5, for v = 1 is presented in Table 1 and Fig. la.
Similarly, for ¥ = 2 and v = 3 we have computed the five velocity components
for different value of r and ¢ and approximate velocity ®5, is shown in Tables
4, 7 and Figs. 2a, 3a respectively.

5.2. The density components for planer symmetry v = 1 are calculated as
follows

T

po=e
P1 = 26_27‘757
P2 = 26_37‘7527

p3 = (3.95555¢ 71" + 1.66666¢ ")t
p1 = (—15.88887¢ 7" + 8.00000e ")t

and so on. Therefore, the density distribution p in the flow-field is given by the
Eq. (23). The approximate density W5 , after truncation up to five term of Eq.
(23) is given by

4
Vs, =Y pn=e"+2 2t 42t + (3.95555¢
n=0

+1.66666¢ )13 + (—15.88887¢ 5" 4 8.00000e 5" )¢t
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This approximate density U5 , for v = 1 is presented in Table 2 and Fig. 1b.
Similarly, we have computed the approximate density W5 , for v =2 and v = 3
and given into Tables 5, 8 and Figs. 2b and 3b respectively for different values
of r and t.

5.3. The pressure components for planer symmetry v = 1 are computed as
follows

po=—e /3,

p1 = (—1.46667e " )t,

p2 = (—3.96000e " )1,

p3 = {(—8.44801 + .52147r)e” %" + (1.22227r)e” " }¢?,

pa = {(—1.97074 4+ 0.96474r)e™"" — (4.86444 + 0.37333r)e*" }t*,

and so on. So, the pressure distribution p in the flow-field is obtained by Eq.
(24). The approximate pressure ys, after truncation up to five term of the
decomposition series (24) is

4
Xow =D P = (~0.3333¢%) + (—1.4667¢ ")t + (~3.9600¢ )2
n=0

+{(—8.4480 + .52157)e 5" + (1.2223r)e” "}t
+{(—1.9707 + 0.9647)e~ " — (4.8644 4 0.3733r)e " }t2.

The numerical value of approximate pressure x5, for v = 1 is given in Table
3 and plotted in Fig. lc. Similarly, the approximate pressure x5, for v = 2
and v = 3 is given in Tables 6, 9 and Figs. 2¢ and 3¢ respectively for different
values of r and ¢.

t r uo

0.5 6.0653e-01
05| 1 3.6789%-01
2 1.3534e-01
0.5| 6.0653e-01
1 1 3.6789%¢-01
2 1.3534e-01
0.5 6.0653e-01
1.5 1 3.6789%-01
2 1.3534e-01
0.5| 6.0653e-01
2 1 3.6789%¢-01
2 1.3534e-01

ug u3 U4 D5 4
-1.2980e-01 -1.0019e-01 -3.1059e-02 3.4549e-01
-3.1932e-02 -1.4470e-02 -2.6985e-03 3.1879e-01
-1.7339e-03 -2.8128e-04 -1.7779e-05 1.3330e-01
-5.1918e-01 -8.0152e-01 -4.9695e-01 -1.2111e-00
-1.2773e-01 -1.1576e-01 -4.3054e-02 8.1341e-01
-6.9355e-03 -2.2502e-03 -2.8447e-04 1.2587e-01
-1.1684e-00 -2.7051e-00 -2.5158e-00 -5.7825e-00
-2.8738e-01 -3.9069e-01 -2.1796e-01 -5.2815e-01
-1.5605e-02 -7.5945e-03 -1.4401e-03 1.1067e-01
-2.0767e-00 -6.4121e-00 -7.9511e-00 -1.5834e01
-5.1091e-01 -9.2607e-01 -6.8886e-01 -7.7580e-00
-5.1091e-01 -1.8002e-02 -4.5518e-03 8.5040e-02

=

OO OO0 OO0 oo ol

Table 1: Variation of the velocity components and approximate velocity ®s,,
with different values of r and ¢ for planer symmetry v = 1 and v = 1.4.
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t|r | po p1 P2 03 pa Vs,

0.5 6.0653e-01 3.6788e-01 1.6735e-01 1.8605e-02 | -5.6621e-02 1.1037e-00
0.5 1 3.6789e-01 1.3534e-01 | 3.7340e-02 1.6073e-03 | -5.4518e-03 5.3671e-01
2 | 1.3534e-01 | 1.8316e-02 | 1.8591e-03 | 1.3186e-05 | -4.2013e-05 | 1.5548e-01
0.5 6.0653e-01 | 7.3576e-01 | 6.6939e-01 | 1.4884e-01 | -9.0594e-01 | 1.2546e-00
1| 1 | 3.6789-01 | 2.7067e-01 | 1.4936e-01 | 1.2858e-02 | -8.7229¢-02 | 7.1354e-01
2 1.3534e-01 3.6631e-02 | 7.4363e-03 1.0546e-04 | -6.7220e-04 1.7884e-01
0.5 6.0653e-01 1.1036e-00 1.5061e-00 | 5.0233e-01 | -4.5863e-00 | -8.6771e-01
1.5 1 3.6789e-01 4.0601e-01 | 3.3606e-01 4.3396e-02 | -4.4159e-01 7.1175e-01
2 | 1.3534e-01 | 5.4947e¢-02 | 1.6732e-02 | 3.5601e-04 | -3.4030e-03 | 2.0397e-01
0.5 6.0653e-01 | 1.4715e-00 | 2.6776e-00 | 1.1907e-00 | -1.4495e+1 | -8.5488e-00
2 | 1 | 3.6789¢-01 | 5.4134e-01 | 5.9745e-01 | 1.0286e-01 | -1.3957e-00 | 2.1387e-01
2 1.3534e-01 7.3263e-02 | 2.9745e-02 | 8.4388e-04 | -1.0755e-02 2.2843e-01

Table 2: Variation of the density components and approximate density ¥s ,
with different value of r» and ¢ for planer symmetry v =1 and v = 1.4.

t | r | po pP1 p2 p3 j 2 X5,p

0.5 -7.4377e-02 | -9.9246e-02 | -8.1264e-02 | -5.1288e-02 | -8.5912e-03 | -3.1477e-01
0.5 1 | -1.6596e-02 | -1.3432e-02 | -6.6706e-03 | -2.4763e-03 | -1.6715e-04 | -3.9341e-02
2 | -8.2625e-04 | -2.4601e-04 | -4.4946e-05 | -5.7242e-06 | -4.1609e-08 | -1.1230e-03
0.5 -7.4377e-02 -1.9849e-01 -3.2506e-01 -4.1030e-01 -1.3746e-01 -1.1457e-01
1 1 | -1.6596e-02 | -2.6863e-02 | -2.6682e-02 | -1.9810e-02 | -2.6744e-03 | -9.2625e-02
-8.2625e-04 | -4.9201e-04 | -1.7978e-04 | -4.5794e-05 | -6.6574e-07 | -1.5445e-03
0.5 -7.4377e-02 | -2.9774e-01 | -7.3136e-01 | -1.3848e-00 | -6.9589e-01 | -3.1842e-00
1.5 1 -1.6596e-02 -4.0294e-02 | -6.0035e-02 -6.6859¢e-02 | -1.3539e-02 | -1.9732e-01
2 | -8.2625e-04 | -7.3802e-04 | -4.0451e-04 | -1.5455e-04 | -3.3703e-06 | -2.1267e-03
0.5 -7.4377e-02 | -3.9698e-01 | -1.3002e-00 | -3.2824e-00 | -2.1993e-00 | -7.2533e-00
2 1 | -1.6596e-02 | -5.3726e-02 | -1.0673e-01 | -1.5848e-01 | -4.2791e-02 | -3.7832e-01
-8.2625e-04 | -9.8402e-04 | -7.1914e-04 | -3.6635e-04 | -1.0652e-05 | -2.9064e-03

Table 3: Variation of the pressure components and approximate pressure xs,
with different value of r and ¢ for planer symmetry v =1 and v = 1.4.

Tables 1-3 show that contribution of higher order components in the veloc-
ity, density and pressure is comparatively small for all the time ¢ and r > 1.
The common ratio \; = z;4+1/z; < 1, for i = 0,1,2,3 and x = u, p, p; therefore,
the series solution may converge by Adomian decomposition method for planer
symmetry. Table 1 and Fig. la show that for planer symmetry, the velocity
decreases with position for all the time ¢ and » > 0.5 and increases steeply for
r < 0.5 for all the time ¢ > 0.5. This show that there exist a discontinuity
surface or shock wave in the velocity distribution with respect to position. For
the planar symmetry, Table 2 and Fig. 1b show that the density decreases with
position for all time ¢ except for 0 < r < 1. For 0 < r < 1 and t > 1, there exist
a discontinuity, i.e. shock wave in distribution of density. Table 3 and Fig. 1lc
show that for the planer symmetry, the pressure increases steeply with position
up to r = 1 and then it become almost constant for all the time ¢.
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Figure 1: Distribution of flow variables: (a) approximate velocity, (b) ap-
proximate density, (c) approximate pressure, in flow field for planer symmetry
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t r uo uy | u2 u3 Ug D5 4
0.5| 6.0653e-01 0 -7.4377e-03 5.6166e-02 1.2359¢-01 7.7885e-01
05| 1 3.6788e-01 0 -1.9700e-02 -9.1615e-03 -2.6825e-03 3.3634e-01
2 1.3534e-01 0 -1.4295e-03 -2.4791e-04 -2.3911e-05 1.3363e-02
0.5| 6.0653e-01 0 -2.9751e-02 4.4933e-01 1.9847e-00 3.0108e-00
1 1 3.6789%¢-01 0 -7.8799¢-02 -7.3288e-02 -4.3809e-02 1.7198e-01
2 1.3534e-01 0 -5.7181e-03 -1.9833e-03 -3.8342¢-04 1.2725e-01
0.5| 6.0653e-01 0 -6.6939¢-02 1.5165e-00 1.0110e01 1.2166e01
1.5 1 3.6789%-01 0 -1.7730e-01 -2.4735e-01 -2.2927e-01 -2.8604e-01
2 1.3534e-01 0 -1.2866e-02 -6.6935e-03 -1.9483e-03 1.1383e-01
0.5| 6.0653e-01 0 -1.1900e-01 3.5946e-00 3.2226e01 3.6308e01
2 1 3.6789%¢-01 0 -3.1520e-01 -5.8631e-01 -7.5776e-01 -1.2914e-00
1.3534e-01 0 -2.2872e-02 -1.5866e-02 -6.1893e-03 9.0408e-02

787

Table 4: Variation of the velocity components and approximate velocity ®s,,
with different values of r and ¢ for cylindrical symmetry v = 2 and v = 1.4.

T | po p1 p2 P3 P4 Us,p
t
0.5 6.0653¢-01 | 0 1.1157e-01 | -9.1967¢-02 | 1.1104e-02 | 4.1404e-01
0.5 1 | 3.6788¢-01 | 6.7668¢-02 | 1.2447¢-02 | -2.5938¢-03 | -3.0029¢-03 | 4.4240e-01
2 | 1.3534e-01 | 1.3737¢-02 | 1.3168¢-03 | -1.1802¢-05 | -3.3046¢-05 | 1.5034e-01
0.5 6.0653¢-01 | 0 “4.46260-01 | 7.3972e-01 | 2.7216e-01 | -3.0729¢-01
1| 1| 3.6788¢c-01 | 1.3534e-01 | 4.9787¢-02 | -2.0162¢-02 | -4.8065¢-02 | 4.8478¢-01
2 | 1.3534e-01 | 2.7474e-02 | 5.2674e-03 | -9.2156e-05 | -5.2838¢-04 | 1.6746e-01
0.5 6.0653¢-01 | 0 -1.0041e-00 | -2.5190e-00 | 2.6341e-00 | -2.8241e-01
1.5 1 | 3.6788¢-01 | 2.0300e-01 | 1.1202e-01 | -6.4736e-02 | -2.4435¢-01 | 3.7382¢-01
2 | 1.3534e-01 | 4.1210e-02 | 1.1852¢-02 | -2.9832¢-04 | -2.6721c-03 | 1.8542¢-01
0.5 6.0653¢-01 | 0 -1.78500-00 | -6.0452¢-00 | 1.5974e+1 | 8.7498¢-00
2 | 1| 3.6788¢-01 | 2.7067¢-01 | 1.9915¢-01 | -1.4246¢-01 | -7.7978¢-01 | -8.4547¢-02
2 | 1.3534e-01 | 5.4947¢-02 | 2.1069¢-02 | -6.6496c-04 | -8.4324¢-03 | 2.0225¢-01
Table 5: Variation of the density components and approximate density ¥s5 ,

in flow-field with different values of r and ¢ for cylindrical symmetry v = 2
and v = 1.4.
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t | r | po p1 p2 p3 2 X5,p

0.5 -7.4377e-02 | 3.6089e-02 -1.0397e-02 1.1536e-02 5.8429e-03 1.0349e-01

0.5 1 | -1.6596e-02 | -9.1578e-03 | -4.1551e-03 | -1.3764e-03 | -1.2649e-04 | -3.1412e-02
2 -8.2625e-04 | -2.0687e-04 | -3.7133e-05 -4.6424e-06 | -6.9032e-08 | -1.0750e-03
0.5 -7.4377e-02 7.2179e-02 4.1590e-02 9.2029e-02 8.1818e-02 -1.4298e-02
1 1 -1.6596e-02 -1.8316e-02 | -1.6620e-02 -1.1286e-02 | -2.3166e-03 | -6.5135e-02
2 | -8.2625e-04 | -4.1374e-04 | -1.4853e-04 | -3.7318e-05 | -1.1332e-06 | -1.4270e-03
0.5 -7.4367e-02 | -1.0827e-01 | -9.3577e-02 | 3.0914e-01 2.3992e-01 2.7284e-01

1.5 1 | -1.6596e-02 | -2.7474e-02 | -3.7396e-02 | -3.9638e-02 | -1.5046e-02 | -1.3615e-01
2 -8.2651e-04 | -6.2061e-04 | -3.3420e-04 | -1.2695e-04 | -6.0133e-06 | -1.9140e-03
0.5 -7.4377e-02 -1.4436e-01 1.6636e-01 7.2792e-01 -3.4646e-01 -3.6269e-03
2 1 -1.6596e-02 -3.6631e-02 | -6.6481e-02 -9.9092e-02 | -6.6579e-02 | -2.8538e-01
2 | -8.2625e-04 | -8.2747e-04 | -5.9413e-04 | -3.0425e-04 | -2.0391e-05 | -2.5725e-03

Table 6: Variation of the pressure components and approximate pressure xs
in flow-field with different values of r and ¢ for cylindrical symmetry v = 2
and v = 1.4.

For the cylindrical symmetry, Tables 4-6 show that the contribution of
higher order components in series solution for velocity, density and pressure
distribution are relatively small for all the time ¢t and » > 1. Therefore we can
conclude that ratio test for convergence of series will be satisfied and solution
of system of gas dynamics equations exist in form of series. The approximate
velocity in cylindrical symmetry decrease for all » and ¢t < 1 but for ¢ > 1, it first
decreases steeply and then increases with r. Tables 5-6 and Figs. 2b—2c¢ show
that there exist multiple discontinuity in distributions of density and pressure
for cylindrical symmetry and their position can be identified.

t r uo uy | u2 u3 Ug D5 4
0.5| 6.0653e-01 0 1.1492¢-01 2.9372e-01 4.8312e-01 1.4983e-00
05| 1 3.6788e-01 0 -7.4681e-03 -1.8172e-03 7.5676e-04 3.5935e-01
2 1.3534e-01 0 -1.1252¢-03 -2.0685e-04 -2.4869e-05 1.3398e-01
0.5| 6.0653e-01 0 4.5968e-01 2.3498e-00 7.2158e-00 1.06318e01
1 1 3.6788e-01 0 -2.9872¢-02 -1.4538e-02 1.2029¢-02 3.3550e-01
2 1.3534e-01 0 -4.5006e-03 -1.6548e-03 -3.9893e-04 1.2878e-01
0.5| 6.0653e-01 0 1.0343e-00 7.9305e-00 3.2192e01 4.1763e02
1.5 1 3.6788e-01 0 -6.7213e-02 -4.9065e-02 6.0224e-02 3.1183e-01
2 1.3534e-01 0 -1.0126e-02 -5.5850e-03 -2.0283e-03 1.1760e-01
0.5| 6.0653e-01 0 1.8387¢e-00 1.8798e01 8.2546e01 1.0379¢02
2 1 3.6788e-01 0 -1.1949e-01 -1.1630e-01 1.8737e-01 3.1946e-01
2 1.3534e-01 0 -1.8002¢-02 -1.3239¢-02 -6.4487e-03 9.7646e-02

Table 7: Variation of the velocity components and approximate velocity ®s,,
in flow-field with different values of r and ¢ for spherical symmetry v = 3 and
v=14.
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Figure 2: Distribution of flow variables: (a) approximate velocity (b) approx-
imate density, (c¢) approximate pressure, in flow field for cylindrical symmetry



790 M. Singh, A. Patel, R. Bajargaan

(@)

i = =
= =T
7T T e

Figure 3: Distribution of flow variables: (a) approximate velocity, (b) approx-
imate density, (c) approximate pressure, in flow field for spherical symmetry
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T | po p1 P2 p3 P4 Us,p

t
0.5 6.56036-01 | -3.6788e-01 | -3.9048e-01 | -1.8426e-01 | 6.3597e-02 | -2.7249e-01

0.5 1 | 3.6788¢-01 | 0 -1.2447e-02 | -6.8625e-03 | -1.3355e¢-03 | 3.4724e-01
2 | 1.3534e-01 | 9.1534e-03 | 7.7461e-04 | -3.6891e-05 | -2.5382e-05 | 1.4521e-01
0.5 6.06536-01 | -7.3576e-01 | -1.5619e-00 | -1.0436e-00 | 3.1547e-00 | 4.2028 e-01

1|1 367801 |0 -4.9787e-02 | -5.5346e-02 | -2.1813e-02 | 2.4093e-01
2 | 1.3534e-01 | 1.8316e-02 | 3.0984e-03 | -2.9303e-04 | -4.0587e-05 | 1.5605e-01
0.5 6.0653¢-01 | -1.1036e-00 | -3.5143e-00 | -1.0979¢-00 | 2.8962e01 | 2.3853e01

1.5 1 | 3.6788¢-01 | 0 -1.1202e-01 | -1.8930e-01 | -1.1529e-01 | -4.8734e-02
2 | 1.3534e-01 | 2.7474e-02 | 6.9715e-03 | -9.7722e-04 | -2.0530e-03 | 1.6675e-01
0.5 6.06536-01 | -1.4715e-00 | -6.2476e-00 | 5.4390e-00 | 4.855le+1 | 4.6873e01

2 | 1| 3.6788-01 | 0 -1.9915e-01 | -4.5704e-01 | -3.9109e-01 | -6.7941e-01
2 | 1.3534e-01 | 3.6631e-02 | 1.2394e-02 | -2.2773e-03 | -6.4823e-03 | 1.7560e-01

Table 8: Variation of the density components and approximate density ¥s ,
in flow-field with different values of ¢ and r for spherical symmetry v = 3 and

v=14.
r | po P1 P2 3 P4 X5,p
t
0.5 -7.4377e-02 | 2.7067¢-02 | 6.0469¢-02 | 7.24366-02 | 2.2298¢-02 | 1.0790e-01
0.5 1 | -1.6595¢-02 | 4.8842¢-03 | -1.6396e-03 | -2.5709¢-04 | 1.1746¢-05 | -2.3365¢-02
2 | -8.2625¢-04 | -1.6773e-04 | -2.9321e-05 | -3.5550e-06 | -7.6148¢-08 | -1.0269¢-03
0.5 -7.4377¢-02 | 5.4134e-02 | 2.4188¢-01 | 5.3279e-01 | -7.4559¢-01 | 8.8374¢-03
1| 1| -1.6596e-02 | -9.7683¢-03 | -6.5583¢-03 | -2.1390e-03 | 1.6301e-04 | -3.4898¢-02
2 | -8.2625¢-04 | -3.5463¢-04 | -1.1728¢-04 | -2.8661e-05 | -1.2533¢-06 | -1.3089¢-03
0.5 -7.4377c-02 | 8.12020-02 | 5.44226-01 | 1.53556-00 | -1.5972¢01 | -1.3885¢01
15 1 | -1.6596e-02 | -1.4653¢-02 | -1.4756e-02 | -7.6819e-03 | 5.4769¢-04 | -5.3139¢-02
2 | -8.2625¢-04 | -5.0319e-04 | -2.6389¢-04 | -9.7979¢-05 | -6.6856e-06 | -1.6980e-03
0.5 -7.4377¢-02 | 1.0827e-01 | 9.6751e-01 | 2.7680e-00 | -1.0561e02 | -1.0184e+2
2 | 1| -1.6596e-02 | -1.9537e-02 | -2.6233¢-02 | -1.9745¢-02 | 1.3687¢-04 | -8.1974e-02
-8.2625¢-04 | -6.7093¢-04 | -4.6913¢-04 | -2.3638¢-04 | -2.2850e-05 | -2.2255¢-03

Table 9: Variation of the pressure components and approximate pressure xs,
in flow-field with different values of r and ¢ for spherical symmetry v = 3 and

v =1.4.

For the spherical symmetry, the tables 7-9 show that the contribution of
higher order components of velocity, density and pressure in their series solution
is decreasing for » > 1 and all time ¢ > 0. Therefore the ratio test will be
satisfied for this domain and series will converse, so the solution exists for » > 1
and all ¢ > 0. The distribution of approximate velocity, approximate density
and approximate pressure for spherical symmetry for different value of r and ¢
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is shown in Tables 7-9 and Figures 3a—3c. It is seen that there exist multiple
discontinuity (shock wave) in the variation of density and pressure with respect
to position.

6. Conclusion

In this paper, Adomian decomposition method is successfully applied for the
solution of the system of gas dynamic equations governing the motion of one-
dimensional unsteady adiabatic flow of the perfect gas under the variable initial
condition for all the three type of symmetry. We have obtained the distribution
of approximate velocity, density and pressure directly as function of position
and time which was not possible in similarity method. This paper also show
the existence of multiple discontinuity or shock wave in the distribution of flow
variables and identification of their positions. It is found that the solution of
the system of gas dynamic equations by the Adomian decomposition method in
form of the series is convergent for a domain of interest. This work show that the
Adomian decomposition method can be used in study of one dimensional gas
dynamic problem in all the three symmetry with more advanced and realistic
gas dynamics problems.
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