COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT
INVOLVING GAUSSIAN ERROR FUNCTION
Teuta Zenku1, Biljana Jolevska-Tuneska2 1Department of Mathematics
University Mother Teresa
Skopje - 1000, Republic of MACEDONIA 2FEIT
Ss Cyril and Methodius University in Skopje
Skopje - 1000, Republic of MACEDONIA
In this paper, using neutrix calculus, several commutative neutrix convolution products are evaluated, involving the Gaussian error function erf(x) and its associated functions erf(x+) and erf (x-).
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] H. Alzer, A Kuczma-type functional inequality for error and complementary error functions, Aequat. Math., 89 (2015), 927-935.
[2] H. Alzer, M.N. Kwong, A subaddivity property of the error function, Proc.
Amer. Math. Soc., 142, No 8 (2014), 2697-2704.
[3] J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse
Math., 7 (1959-1960), 291-398.
[4] H. Dirschmid, F.D. Fischer, Generalized Gausssian error functions and
their applications, Acta Mech., 226 (2015), 2887-2897.
[5] B. Fisher, A noncommutative neutrix product of distributions, Math.
Nachr., 108 (1982), 117-127.
[6] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom
Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 119-135.
[7] B. Fisher, B. Jolevska-Tuneska, A. Takaci, On convolutions and neutrix
convolutions involving the incomplete gamma function, Integral Transforms Spec. Funct., 15, No 5 (2004), 405-414.
[8] B. Fisher, F. Al-Sirehy, E. Ozcag, Results involving gaussian error function
2 erf (2016), |x|1/2 231-240.
and the neutrix convolution, Advances in Math., Sci. J., 5, No
[9] B. Fisher, F. Al-Sirehy, Results on the dilagorithm integral, International Journal of Applied Mathematics, 28, No 6 (2015), 727-738; doi:10.12732/ijam.v28i6.7.
[10] B. Fisher, F. Al-Sirehy, M. Telci, Convolutions involving the error function,
International Journal of Applied Mathematics, 13, No 4 (2003), 317-326.
[11] B. Fisher, C.K. Li, A commutative neutrix convolution product of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 23
(1993), 13-27.
[12] B. Fisher, E. Özçağ, Ü Gülen, The exponential integral and the commutative neutrix convolution product, J. Analysis, 7 (1999), 7-20.
[13] B. Fisher, M. Telci, F. Al-Sirehy, The error function and the neutrix convolution, International Journal of Applied Mathematics, 8 (2002), 295-309.
[15] W. Gröbner, N. Hofreter, Integrafel II: Bestimmte Integrale, BandSpringer, New York (1973).
2,
[16] B. Jolevska-Tuneska, A. Takaci, Results on the commutative neutrix convolution product of distributions, Hacettepe J. of Mathematics and Statistics,
37, No 2 (2008), 135-141.
[17] B. Jolevska-Tuneska, A. Takaci, B. Fisher, On some neutrix convolution
product of distributions, Integral Trans. Spec. Funct., 14, No 3 (2003),
243-250.
[18] D.S. Jones, The convolution of generalized functions, Quart. J. Math., 24
(1973), 145-163.
[19] E. Özçaǧ, H. Kansu, A result of neutrix convolution of distributions, Indian
J. Pure Appl. Math., 28, No 10 (1997), 1399-1411.
[20] I.N. Sneddon, Special Functions of Mathematical Physics and Chemistry,
Oliver and Boyd (1961).