International Journal of Applied Mathematics

Volume 30 No. 2 2017, 151-161

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v30i2.6

ON SOME TOPOLOGICAL PROPERTIES OF GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED

Giilcan Atıci Turan

Department of Mathematics Fac. of Arts and Sciences Muş Alparslan University C block, Diyarbakır Road, 49250 – Muş, TURKEY

Abstract: In this paper, we define new generalized difference sequence spaces $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ and $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u)$, where $\mathcal{M} = (M_{k})$ and $\mathcal{N} = (N_{k})$ are sequences of Orlicz functions such that M_{k} and N_{k} are mutually complementary for each k. We also examine some topological properties and establish some inclusion relations between these spaces.

AMS Subject Classification: 46A45, 40A05

Key Words: difference sequence spaces, Orlicz function

1. Introduction

An Orlicz function is a function $M:[0,\infty)\to [0,\infty)$ which is continuous, non-decreasing and convex with $M(0)=0,\ M(x)>0$ for x>0 and $M(x)\to\infty$ as $x\to\infty$.

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to define the Orlicz sequence space

$$\ell_M = \left\{ x = (x_k) : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is a Banach space with the norm

Received: February 20, 2017 (c) 2017 Academic Publications

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is well known that if M is a convex function and M(0) = 0, then $M(\lambda x) \le \lambda M(x)$ for all λ with $0 \le \lambda \le 1$.

Any Orlicz function M_k always has the integral representation

$$M_k(x) = \int_0^x p_k(t)dt,$$

where p_k , known as the kernel of M_k , is non-decreasing, is right continuous for t > 0, $p_k(0) = 0$, $p_k(t) > 0$ for t > 0 and $p_k(t) \to \infty$ as $t \to \infty$.

Given an Orlicz function M_k with kernel $p_k(t)$, define

$$q_k(s) = \sup \{t : p_k(t) \le s, \ s \ge 0\}.$$

Then $q_k(s)$ possesses the same properties as $p_k(t)$ and the function N_k , defined as

$$N_k(x) = \int_0^x q_k(s)ds,$$

is an Orlicz function. The functions M_k and N_k are called mutually complementary Orlicz functions [1].

The difference sequence spaces were introduced by Kızmaz [2] and the concept was generalized by Et and Çolak [7]. Later, Et and Esi [6] extended the difference sequence spaces to the sequence spaces

$$X\left(\Delta_{v}^{m}\right)=\left\{ x=\left(x_{k}\right):\left(\Delta_{v}^{m}x_{k}\right)\in X\right\}$$

for $X = \ell_{\infty}$, c or c_0 , where $v = (v_k)$ be any fixed sequence of non-zero complex numbers and $(\Delta_v^m x_k) = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1})$, $\Delta_v^m x = \sum_{i=0}^m (-1)^i {m \choose i} v_{k+i} x_{k+i}$ for all $k \in \mathbb{N}$.

The sequence spaces $\Delta_{v}^{m}\left(\ell_{\infty}\right)$, $\Delta_{v}^{m}\left(c\right)$ and $\Delta_{v}^{m}\left(c_{0}\right)$ are Banach spaces normed by

$$||x||_{\Delta} = \sum_{i=1}^{m} |v_i x_i| + ||\Delta_v^m x||_{\infty}.$$

Definition 1. Let λ be a sequence space. Then λ is called

- (i) Solid (or normal), if $(\alpha_k x_k) \in \lambda$ whenever $(x_k) \in \lambda$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$.
- (ii) *Monotone*, if provided λ contains the canonical preimages of all its stepspaces.
 - (iii) Perfect, if $\lambda = \lambda^{\alpha\alpha}$, see [9].

Proposition 2. λ is perfect $\Rightarrow \lambda$ is normal $\Rightarrow \lambda$ is monotone, see [9].

A Banach sequence space (λ, S) is called a BK-space, if the topology S of λ is finer than the co-ordinatewise convergence topology, or equivalently, the projection maps $P_i: \lambda \to K$, $P_i(x) = x_i$, $i \geq 1$ are continuous, where K is the scalar field \mathbb{R} (the set of all reals) or \mathbb{C} (the complex plane). For $x = (x_1, ..., x_n, ...)$ and $n \in \mathbb{N}$ (the set of natural numbers), we write the n^{th} section of x as $x^{(n)} = (x_1, ..., x_n, 0, 0, ...)$. If $\{x^{(n)}\}$ tends to x in (λ, S) for each $x \in \lambda$, we say that (λ, S) is an AK-space. The norm $\|.\|_{\lambda}$ generating the topology S of λ is said to be monotone if $\|x\|_{\lambda} \leq \|y\|_{\lambda}$ for $x = \{x_i\}$, $y = \{y_i\}$ $\in \lambda$ with $|x_i| \leq |y_i|$, for all $i \geq 1$, see [8].

Definition 3. Any two Orlicz functions M_1 and M_2 are said to be *equivalent*, if there are positive constant α and β , and x_0 such that $M_1(\alpha x) \leq M_2(x) \leq M_1(\beta)$ for all x with $0 \leq x \leq x_0$, see [9].

2. Main Results

Definition 4. Let M_k and N_k be mutually complementary functions for each k and let $\lambda = \{\lambda_k\}$ be a sequence of strictly positive real numbers. Then we define the following sequence spaces:

$$\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) = \{x = (x_{k}) : \sum_{k > 1} u_{k} M_{k} \left(\frac{|\Delta_{v}^{m} x_{k}|}{\lambda_{k} \rho}\right) < \infty, \text{ for some } \rho > 0\}$$

and

$$\ell_{\mathcal{N}}^{\lambda}(\Delta_v^m, u) = \{x = (x_k) : \sum_{k \ge 1} u_k N_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0\}.$$

Throughout the paper, we write $M_k(1) = 1$ and $N_k(1) = 1$ for all $k \in \mathbb{N}$.

Theorem 5. Let $\mathcal{M} = (M_k)$ and $\mathcal{N} = (N_k)$ be two sequences of Orlicz functions. Then $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ and $\ell_{\mathcal{N}}^{\lambda}(\Delta_v^m, u)$ are linear spaces over the field of complex numbers.

Proof. Let $x, y \in \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ and $a, b \in \mathbb{C}$. Then there exist positive numbers ρ_1 and ρ_2 such that

$$\sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho_1} \right) < \infty$$

and

$$\sum_{k>1} u_k M_k \left(\frac{|\Delta_v^m y_k|}{\lambda_k \rho_2} \right) < \infty.$$

Define $\rho_3 = \max(2|a|\rho_1, 2|b|\rho_2)$. Since M_k are non-decreasing and convex functions and Δ^m is linear, we have

$$\sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m (ax_k + by_k)|}{\lambda_k \rho_3} \right)$$

$$\leq \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho_1} \right) + \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m y_k|}{\lambda_k \rho_2} \right) < \infty.$$

This proves that $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ is a linear space. The proof for $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u)$ is similar.

The proofs of the following theorems are easy and thus omitted.

Theorem 6. The sequence space $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ is a normed space with norm

$$||x||_{\lambda}^{\Delta} = \sum_{i=1}^{m} |x_i| + \inf\{\rho > 0 : \sum_{k>1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho}\right) \le 1\}.$$

Theorem 7. The sequence space $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u)$ is a normed space with norm

$$||x||_{\Delta}^{\lambda} = \sum_{i=1}^{m} |x_i| + \inf\{\rho > 0 : \sum_{k \ge 1} u_k N_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho}\right) \le 1\}.$$

Theorem 8. The spaces $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u), \|.\|_{\lambda}^{\Delta}\right)$ and $\left(\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u), \|.\|_{\Delta}^{\lambda}\right)$ are Banach spaces.

Theorem 9. The sequence spaces $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ equipped with the norm $\|.\|_{\lambda}^{\Delta}$ and $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u)$ equipped with the norm $\|.\|_{\Delta}^{\lambda}$ are BK-spaces.

Proof. The space $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m,u),\|.\|_{\lambda}^{\Delta}\right)$ is a Banach space by Theorem 8. Now let

$$||x^n - x||_{\lambda}^{\Delta} \to 0$$

as $n \to \infty$. Then

$$|x_k^n - x_k| \to 0$$

as $n \to \infty$ for each $k \le m$ and

$$\inf\{\rho > 0 : \sum_{k>1} u_k M_k \left(\frac{|\Delta_v^m x_k^n - \Delta_v^m x_k|}{\lambda_k \rho} \right) \le 1\} \to 0$$

as $n \to \infty$ for all $k \in \mathbb{N}$. If $u_k M_k \left(\frac{\left| \Delta_v^m x_k^n - \Delta_v^m x_k \right|}{\lambda_k \|x\|_{\lambda}^{\Delta}} \right) \le 1$, then $\frac{\left| \Delta_v^m x_k^n - \Delta_v^m x_k \right|}{\lambda_k \|x\|_{\lambda}^{\Delta}} \le 1$ for all k. Therefore we also obtain

$$|\Delta_v^m x_k^n - \Delta_v^m x_k| \le \lambda_k \|x^n - x\|_{\lambda}^{\Delta}.$$

Since $||x^n - x||_{\lambda}^{\Delta} \to 0$, then $|\Delta_v^m x_k^n - \Delta_v^m x_k| \to 0$ and

$$\left| \sum_{i=0}^{m} (-1)^{i} {m \choose v} v_{k+i} \left(x_{k+i}^{n} - x_{k+i} \right) \right| \to 0$$

as $n \to \infty$ for all $k \in \mathbb{N}$. On the other hand, we may write

$$\left| v_{k+m} \left(x_{k+m}^{n} - x_{k+m} \right) \right| \leq \left| \sum_{i=0}^{m} (-1)^{i} {m \choose v} v_{k+i} \left(x_{k+i}^{n} - x_{k+i} \right) \right|
+ \left| {m \choose 0} v_{k} \left(x_{k}^{n} - x_{k} \right) \right| + \dots
+ \left| {m \choose m-1} v_{k+m-1} \left(x_{k+m-1}^{n} - x_{k+m-1} \right) \right|.$$

Then $|x_k^n - x_k| \to 0$ as $n \to \infty$ for all $k \in \mathbb{N}$. Hence $\left(\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u), \|.\|_{\lambda}^{\Delta}\right)$ is a BK-space.

The proof is similar for $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u)$.

Theorem 10. Let $\mathcal{M} = (M_k)$ be a sequence of Orlicz functions. Then $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^{m-1}, u) \subset \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$. In general $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^i, u) \subset \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$, for i = 1, 2, ..., m-1.

Proof. Let $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m-1}, u)$. Then

$$\sum_{k>1} u_k M_k \left(\frac{\left| \Delta_v^{m-1} x_k \right|}{\lambda_k 2\rho} \right) < \infty.$$

Since M_k are non-decreasing and convex functions,

$$\sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k 2\rho} \right) = \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1}|}{\lambda_k 2\rho} \right)$$

$$\leq \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^{m-1} x_k|}{\lambda_k \rho} \right) + \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^{m-1} x_{k+1}|}{\lambda_k \rho} \right) < \infty.$$

Thus $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m-1}, u) \subset \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$. This completes the proof.

Theorem 11. Let $\mathcal{N} = (N_k)$ be a sequence of Orlicz functions. Then $\ell_{\mathcal{N}}^{\lambda}(\Delta_v^{m-1}, u) \subset \ell_{\mathcal{N}}^{\lambda}(\Delta_v^m, u)$. In general $\ell_{\mathcal{N}}^{\lambda}(\Delta_v^i, u) \subset \ell_{\mathcal{N}}^{\lambda}(\Delta_v^m, u)$, for i = 1, 2, ..., m-1.

Proof. Let $x \in \ell^{\lambda}_{\mathcal{N}}(\Delta^{m-1}_v, u)$. Then

$$\sum_{k>1} u_k N_k \left(\frac{\left| \Delta_v^{m-1} x_k \right|}{\lambda_k \rho} \right) < \infty.$$

Since N_k are non-decreasing and convex functions

$$\sum_{k\geq 1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{2\rho} \right) = \sum_{k\geq 1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1} \right|}{2\rho} \right)$$

$$\leq \sum_{k\geq 1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^{m-1} x_k \right|}{\rho} \right) + \sum_{k\geq 1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^{m-1} x_{k+1} \right|}{\rho} \right) < \infty.$$

Thus $\ell_{\mathcal{N}}^{\lambda}(\Delta_v^{m-1}, u) \subset \ell_{\mathcal{N}}^{\lambda}(\Delta_v^m, u)$. This completes the proof.

Theorem 12. Let $\mathcal{M} = (M_k)$ and $\mathcal{T} = (T_k)$ be any two sequence of Orlicz functions. Then we have:

(i)
$$\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) \cap \ell_{\lambda}^{\mathcal{T}}(\Delta_{v}^{m}, u) \subset \ell_{\lambda}^{\mathcal{M}+\mathcal{T}}(\Delta_{v}^{m}, u)$$

(i) $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) \cap \ell_{\lambda}^{\mathcal{T}}(\Delta_{v}^{m}, u) \subset \ell_{\lambda}^{\mathcal{M}+\mathcal{T}}(\Delta_{v}^{m}, u),$ (ii) If \mathcal{M} and \mathcal{T} are equivalent, then $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) = \ell_{\lambda}^{\mathcal{T}}(\Delta_{v}^{m}, u).$

Proof. (i) Let $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) \cap \ell_{\lambda}^{\mathcal{T}}(\Delta_{v}^{m}, u)$. Then

$$\sum_{k>1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) < \infty$$

and

$$\sum_{k>1} u_k T_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) < \infty.$$

We have

$$(M_k + T_k) \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) \le \left[M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) \right] + \left[T_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) \right].$$

Applying $\sum_{k\geq 1}$ and multiplying u_k both side of this inequality, we get,

$$\sum_{k\geq 1} u_k (M_k + T_k) \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right)$$

$$\leq \sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right) + \sum_{k\geq 1} u_k T_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \right).$$

This completes the proof.

(ii) The proof follows from Definition 3.

Theorem 13. Let $\mathcal{N} = (N_k)$ and $\mathcal{T} = (T_k)$ be any two sequence of Orlicz functions. Then we have:

(i) $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u) \cap \ell_{\mathcal{T}}^{\lambda}(\Delta_{v}^{m}, u) \subset \ell_{\lambda}^{\mathcal{N}+\mathcal{T}}(\Delta_{v}^{m}, u),$ (ii) If \mathcal{M} and \mathcal{T} are equivalent, then $\ell_{\mathcal{N}}^{\lambda}(\Delta_{v}^{m}, u) = \ell_{\mathcal{T}}^{\lambda}(\Delta_{v}^{m}, u).$

Proof. (i) Let $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u) \cap \ell_{\lambda}^{\mathcal{T}}(\Delta_v^m, u)$. Then

$$\sum_{k>1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho} \right) < \infty$$

and

$$\sum_{k>1} u_k T_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho} \right) < \infty.$$

We have

$$(N_k + T_k) \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho} \right) \le \left[N_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho} \right) \right] + \left[T_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho} \right) \right].$$

Applying $\sum_{k\geq 1}$ and multiplying u_k both side of this inequality, we get,

$$\sum_{k\geq 1} u_k \left(N_k + T_k \right) \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho} \right)$$

$$\leq \sum_{k\geq 1} u_k N_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho} \right) + \sum_{k\geq 1} u_k T_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho} \right).$$

This completes the proof.

(ii) The proof follows from Definition 3.

Theorem 14. If μ is a normal sequence space containing λ , then $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ is a proper subspace of μ . In addition, if μ is equipped with the monotone norm (quasi-norm) $\|.\|_{\mu}$, the inclusion map $I : \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) \to \mu(\Delta_{v}^{m}, u)$ is continuous with $\|I\| \leq \|\{\lambda_{k}\}\|_{\mu}$.

Proof. Let $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$. Since $\sum_{k \geq 1} u_{k} M_{k} \left(\frac{|\Delta_{v}^{m} x_{k}|}{\lambda_{k} \rho} \right) < \infty$ for some $\rho > 0$,

then there exists a constant K > 0 such that $\frac{|\Delta_v^m x_k|}{\lambda_k \rho} \leq K$ for all $k \in \mathbb{N}$. Since μ is a normal sequence space containing λ , we have $(\Delta_v^m x_k) \in \mu$ and so that $x \in \mu(\Delta_v^m)$. Hence $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u) \subset \mu(\Delta_v^m, u)$.

Further, since $M_k(1) = 1$ for all $k \in \mathbb{N}$, then

$$\sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\lambda_k \|x\|_{\lambda}^{\Delta}} \right) \leq 1,$$

and so that

$$|\Delta_v^m x_k| \leq \lambda_k ||x||_{\lambda}^{\Delta}$$
, for all $k \in \mathbb{N}$.

As $\|.\|_{\mu}$ is monotone, $\|Ix\|_{\mu} = \|(\Delta_v^m x_k)\|_{\mu} \le \|\{\lambda_k\}\|_{\mu} \|x\|_{\lambda}^{\Delta}$ and hence $\|I\| \le \|\{\lambda_k\}\|_{\mu}$.

Theorem 15. If η is a normal sequence space containing $\{\frac{1}{\lambda_k}\} \equiv \lambda^{-1}$, then $\ell_{\mathcal{N}}^{\lambda}(\Delta^m)$ is a proper subspace of η . If the norm (quasi-norm) $\|.\|_{\eta}$ on η is monotone, then the inclusion map $J:\ell_{\mathcal{N}}^{\lambda}(\Delta_v^m,u)\to\eta(\Delta_v^m,u)$ is continuous with $\|J\|\leq \|\{\lambda_k^{-1}\}\|_{\eta}$.

The proof is similar to Theorem 10 and therefore we omit it.

3. Interrelationship between the Spaces $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u)$ and $\ell_{\mathcal{M}}^{\lambda}(\Delta_{v}^{m}, u)$

If $\lambda_k = 1$ for all $k \in \mathbb{N}$, then the sequence space $\ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u)$ reduces to the sequence space

$$\ell_{\mathcal{M}}(\Delta_v^m, u) = \{x = (x_k) : \sum_{k \ge 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0\}.$$

Theorem 16. If $\lambda = \{\lambda_k\}$ is a bounded sequence such that $\inf \lambda_k > 0$, then $\ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u) = \ell_{\mathcal{M}}^{\mathcal{M}}(\Delta_v^m, u) = \ell_{\mathcal{M}}(\Delta_v^m, u)$.

Proof. Let $x \in \ell_{\mathcal{M}}(\Delta_v^m, u)$. Then $\sum_{k \geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\rho}\right) < \infty$ for some $\rho > 0$. Since $\lambda = \{\lambda_k\}$ is bounded, we can write $a \leq \lambda_k \leq b$ for some $b > a \geq 0$. Define $\rho_1 = \rho b$. Since M_k is increasing, it follows that $\sum_{k \geq 1} u_k M_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho_1}\right) \leq \sum_{k \geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\rho}\right) < \infty$. Hence $\ell_{\mathcal{M}}(\Delta_v^m, u) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u)$. The other inclusion $\ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u) \subset \ell_{\mathcal{M}}(\Delta_v^m, u)$ follows from the inequality

$$\sum_{k\geq 1} u_k M_k \left(\frac{|\Delta_v^m x_k|}{\rho/a} \right) \leq \sum_{k\geq 1} u_k M_k \left(\frac{\lambda_k |\Delta_v^m x_k|}{\rho} \right) < \infty.$$

Therefore, $\ell_{\mathcal{M}}^{\lambda}(\Delta_{v}^{m}, u) = \ell_{\mathcal{M}}(\Delta_{v}^{m}, u)$. Similarly, one can prove $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) = \ell_{\mathcal{M}}(\Delta_{v}^{m}, u)$.

Theorem 17. If $\{\lambda_k\} \in \ell_{\infty}$ with $a = \sup_{k \geq 1} \lambda_k \geq 1$ and $\{\lambda_k^{-1}\}$ is unbounded, then $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ is properly contained in $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ and the inclusion map $T : \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u) \to \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ is continuous with $||T|| \leq a^2$.

Proof. For any $\rho > 0$ and $\rho' = \rho a^2$, we have

$$\sum_{k \ge 1} u_k M_k \left(\frac{\lambda_k \left| \Delta_v^m x_k \right|}{\rho'} \right) \le \sum_{k \ge 1} u_k M_k \left(\frac{\left| \Delta_v^m x_k \right|}{\lambda_k \rho} \right) < \infty$$

for $x = \{x_k\}$. Hence $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u)$.

We now show that the containment $\ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u) \subset \ell_{\mathcal{M}}^{\lambda}(\Delta_{v}^{m}, u)$ is proper. From the unboundedness of the sequence $\{\lambda_{k}^{-1}\}$, choose a sequence $\{k_{n}\}$ of positive integers such that $\lambda_{k_{n}}^{-1} \geq n$. Define $\Delta_{v}^{m} x = \{\Delta_{v}^{m} x_{k}\}$ as follows:

$$\Delta_v^m x_k = \begin{cases} 1/n, & k = k_n, \quad n = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}.$$

Then $x \in \ell^{\lambda}_{\mathcal{M}}(\Delta^m_v, u)$; but $x \notin \ell^{\mathcal{M}}_{\lambda}(\Delta^m_v, u)$.

To prove the continuity of the inclusion map T, let us first consider the case obtained for a = 1. For $x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m})$, we write

$$A_{\lambda}^{\mathcal{M}}\left(\Delta_{v}^{m}, u\right) = \left\{\rho > 0 : \sum_{k \ge 1} M_{k}\left(\frac{|\Delta_{v}^{m} x_{k}|}{\lambda_{k} \rho}\right) \le 1\right\}$$

and

$$B_{\mathcal{M}}^{\lambda}\left(\Delta_{v}^{m}, u\right) = \left\{\rho > 0 : \sum_{k \geq 1} M_{k}\left(\frac{\lambda_{k} \left|\Delta_{v}^{m} x_{k}\right|}{\rho}\right) \leq 1\right\}.$$

Since M_k are increasing and a=1, we get $A_{\lambda}^{\mathcal{M}}(\Delta_v^m, u) \subset B_{\mathcal{M}}^{\lambda}(\Delta_v^m, u)$. Hence

$$||x||_{\Delta}^{\lambda} = \inf B_{\mathcal{M}}^{\lambda} \left(\Delta_{v}^{m}, u \right) \le \inf A_{\lambda}^{\mathcal{M}} \left(\Delta_{v}^{m}, u \right) = ||x||_{\lambda}^{\Delta}, \tag{1}$$

i.e., $||T(x)||_{\Delta}^{\lambda} \leq ||x||_{\lambda}^{\Delta}$. Thus T is continuous with $||T|| \leq 1 = a^2$. If $a \neq 1$, define $\beta_k = \frac{\lambda_k}{a}$, $k \in \mathbb{N}$. Then $\beta_k \leq 1$ and from (1), it follows that

$$||x||_{\Delta}^{\beta} \le ||x||_{\beta}^{\Delta} \text{ for } x \in \ell_{\lambda}^{\mathcal{M}}(\Delta_{v}^{m}, u).$$
 (2)

Hence from (2)

$$||T(x)||_{\Delta}^{\lambda} = ||x||_{\Delta}^{\lambda} \le a^2 ||x||_{\lambda}^{\Delta},$$

i.e., T is continuous with $||T|| \leq a^2$. This completes the proof.

Theorem 18. If $\{\lambda_k\}$ is unbounded with $\sup_{k\geq 1} \lambda_k^{-1} = d \geq 1$, $\lambda_k > 0$ for all k, then $\ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u)$ is properly contained in $\ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ and the inclusion map $U: \ell_{\mathcal{M}}^{\lambda}(\Delta_v^m, u) \to \ell_{\lambda}^{\mathcal{M}}(\Delta_v^m, u)$ is continuous with $||U|| \leq d^2$.

Proof. The proof of this theorem is similar to that of Theorem 17 and so is omitted. \Box

References

- [1] Ç. A. Bektaş and G. Atıci, On some new modular sequence spaces, *Bol. Soc. Paran. Mat.*, **31** (2013), 55-65.
- [2] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
- [3] H. Nakano, Modulared sequence spaces, *Proc. Jap. Acad.*, **27** Reprinted in: *Semi-ordered Linear Spaces*, Tokyo (1955).
- [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1965), 379-390.
- [5] J.Y.T. Woo, On modular sequence spaces, Studia Math., 48 (1973), 271-289.
- [6] M. Et and A. Esi, On Köthe-Toeplitz duals of generalized difference sequence spaces, *Bull. Malaysian Math Sc. Soc.*, **23** (2000), 25-32.
- [7] M. Et and R. Çolak, On generalized difference sequence spaces. Soochow J. Math., 21 (1995), 377-386.
- [8] M. Gupta and S. Pradhan, On certain type of modular sequence spaces, *Turk. J. Math.*, **32** (2008), 293-303.
- [9] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York (1981).