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Abstract: In this paper, we study a capacity theory based on a definition of
a Riesz potential in the Euclidean space. Also, we define the Riesz (α, p(.))-
capacity and discuss the properties of the capacity in the variable exponent
Lebesgue space Lp(.)(Rn).
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1. Introduction

The interest in the variable exponent Lebesgue spaces has increased since the
1990s because of their use in a variety of applications such as mathematical
modeling of electrorheological fluids, calculus of variations, differential equa-
tions with non-standard growth etc.

The study of variable exponent function spaces in higher dimensions was
presented in 1991 an article by Kováčik and Rákosńık [10]. They investigated
some basic properties of the variable exponent Lebesgue space Lp(.)(Rn) and
the Sobolev space W k,p(.) (Rn) such as reflexivity and Hölder inequalities.

Since the variable exponent Lebesgue spaces is not invariant with respect
to translations, convolution operators do not behave well in the spaces. For
example, the Young theorem is not valid in general in the space Lp(.)(Rn), see
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[14]. Also, the translation operator is not continuous and the convolution with
g ∈ L1(Rn) is not continuous as well in general, i.e. the inequality ‖f ∗ g‖p(.) ≤
C ‖f‖p(.) ‖g‖1 is not satisfy in general.

The Riesz kernel Iα for 0 < α < n, is defined as

Iα (x) =
1

γ (α, n)
|x|α−n ,

where γ (α, n) =
π

n

2 2αΓ(α

2 )
Γ(n

2
−α

2 )
. The Riesz potential of a measurable function f on

R
n is defined by the convolution

Iα ∗ f (x) =
1

γ (α, n)

∫

Rn

f (y)

|x− y|n−αdy, see [16].

In this paper, we will omit the value of 1
γ(α,n) since it is not crucial for our

purpose. Throughout his paper, we call the convolution Iα ∗ f simply Iαf .
In R

n, the capacity theory for the Riesz and Bessel potential can be found in
[2], [3], [11] and [12]. The notion of capacity presents a standard way to describe
exceptional sets in many different function spaces. A part of the theory for Riesz
and Bessel capacity follows from general results in [8] and [15]. These capacities
are very convenient in the function theory for the Sobolev spaces and in the
theory of partial differential equations. The applications of these set functions
need either a comprehensive knowledge for the exceptional sets or estimate on
the rate at which the capacity of a sequence of bounded sets tends to zero.
Moreover, they can determine existence of the Sobolev functions and solution
for elliptic partial differential equations, as an application see [1].

Nuutinen and Silvestre defined a Riesz capacity in metric spaces in [13].
They studied the fundamental properties of this capacity such as monotonicity,
convergence results, relationship between the Hausdorff measure. Our purpose
is to investigate the Riesz capacity in n-dimensional Euclidean space Rn, n ≥ 2
to the variable exponent case.

2. Notation and Preliminaries

We denote by R
n the Euclidean space of dimension n ≥ 2. For x ∈ R

n and
r > 0 we denote the open ball with center x and radius r by B (x, r). The
measure µ is doubling if there is a fixed constant cd ≥ 1, called the doubling
constant of µ such that

µ (B (x0, 2r)) ≤ cdµ (B (x0, r))
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for every ball B (x0, r) in R
n. The space C∞

0 (Rn) is the space of all infinitely
differentiable functions with compact support. We denote the family of all
measurable functions p(.) : Rn → [1,∞) (called the variable exponent on R

n)
by the symbol P (Rn). In this paper, the function p(.) always denotes a variable
exponent. For p(.) ∈ P (Rn), put

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

For every measurable functions f on R
n we define the function

̺p(.)(f) =

∫

Rn

|f(x)|p(x) dx.

The function ̺p(.) is convex modular. Lp(.)(Rn) is denoted as the set of all
(equivalence classes) measurable functions f on R

n such that ̺p(.)(λf) < ∞ for
some λ > 0, equipped with the Luxemburg norm

‖f‖p(.) = inf

{

λ > 0 : ̺p(.)

(

f

λ

)

≤ 1

}

.

If p+ < ∞, then f ∈ Lp(.)(Rn) iff ̺p(.)(f) < ∞. The set Lp(.)(Rn) is a Banach
space with the norm ‖.‖p(.). If p(.) = p is a constant function, then the Lux-

emburg coincides with the usual Lp−norm. We denote by L
p(.)
+ (Rn) the subset

of Lp(.)(Rn) of non-negative functions. The space L1
loc (R

n) is to be space of all
measurable functions f on R

n such that f.χK ∈ L1 (Rn) for any compact subset
K ⊂ R

n.

Nuutinen and Silvestre defined a metric type of the Riesz potential of order
γ such that 0 < γ < 1 and

Iγf (x) =

∫

X

f (y)

µ (B (x, d (x, y)))1−γ
dµ (y) ,

where the metric space (X, d) equipped with a doubling measure µ. The Riesz
(γ, p)− capacity of a set E ⊂ X denoted by

Cγ,p (E) = inf
f∈R(E)

‖f‖pp ,

where

R(E) =
{

f ∈ L
p
+(X) : Iγf ≥ 1 on E

}

, see [13].
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Let A1 ⊂ A2 ⊂ ... ⊂ R
n and A =

∞
⋃

i=1
Ai. If the convergence satisfies

C (Ai) −→ C (A), the capacity C is called Fatou capacity. We also say that a
property holds C − q.e. on R

n if it holds for all x ∈ R
n except those in a set E

with C (E) = 0, see [4], [11].

3. The Riesz (α, p (.))-Capacity

Throughout his paper, we will assume that 1 < p− ≤ p (.) ≤ p+ < n < ∞ and
0 < α < n. The usual Riesz potential Iαf : Rn −→ [0,∞] is defined by the
integral

Iαf (x) =

∫

Rn

f (y)

|x− y|n−αdy

for f measurable function with f ≥ 0. To define a capacity we denote

Sα(A) =
{

f ∈ L
p(.)
+ (Rn) : Iαf ≥ 1 on A

}

.

for the set A ⊂ R
n. The Riesz (α, p (.))- capacity of A is defined by

Rα,p(.) (A) = inf
f∈Sα(A)

ρp(.) (f) .

The following theorem is well known by [12].

Theorem 1. If f is a non-negative function, then Iαf is a lower semi-

continuous function.

Theorem 2. The Riesz (α, p (.))-capacity is an outer measure.

Proof. By the meaning of the infimum, we get

Rα,p(.) (∅) = inf
f∈Sα(∅)

ρp(.) (f) = 0.

Let A1 ⊂ A2 and f (x) ∈ Sα(A1). Then the inclusion
{

f ∈ L
p(.)
+ (Rn) : Iαf ≥ 1 on A2

}

⊂
{

f ∈ L
p(.)
+ (Rn) : Iαf ≥ 1 on A1

}

holds. Thus the Riesz (α, p (.))- capacity satisfies monotonicity. Now, we will
prove the countable subadditivity condition. Assume that {As}

∞
s=1 be a se-

quence and A =
∞
⋃

s=1
As. Also, we can assume that

∞
∑

s=1
Rα,p(.) (As) < ∞ i.e.
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Rα,p(.) (As) < ∞ for every s ∈ N. Otherwise the proof is clear. Let ε > 0.
Again using the meaning of the infimum we can choose fs ∈ Sα(As) such that

ρp(.) (f) < Rα,p(.) (As) +
ε

2s
.

Denote f := sups∈N fs. It is clear that (f (x))p(.) ≤
∞
∑

s=1
(fs (x))

p(.) for all x ∈ R
n.

Since fs ∈ L
p(.)
+ (Rn) are positive measurable functions for every s ∈ N,

ρp(.) (f) ≤
∞
∑

s=1

Rα,p(.) (As) + ε.

Because of the fact that fs (x) ≤ f (x) for all x ∈ R
n and s ∈ N, we write that

Iαfs (x) ≤ Iαf (x). Let x ∈
∞
⋃

s=1
As. Thus there exists s ∈ N such that x ∈ As

and then 1 ≤ Iαfs (x) ≤ Iαf (x). If we consider the definition of Rα, it is clear

that f ∈ Sα

(

∞
⋃

s=1
As

)

. This yields

Rα,p(.)

(

∞
⋃

s=1

As

)

≤
∞
∑

s=1

Rα,p(.) (As) + ε.

This completes the proof as ε −→ 0.

Theorem 3. If A is a subset of Rn, then

Rα,p(.) (A) = inf
A⊂U
U open

Rα,p(.) (U) .

Proof. Let A ⊂ U such that U is open. Using the monotonicity property of
the Riesz (α, p (.))-capacity,

Rα,p(.) (A) ≤ inf
A⊂U
U open

Rα,p(.) (U) . (1)

Now, we can suppose that Rα,p(.) (A) < ∞. Otherwise the proof is clear. Let

0 < ε < 1 and f ∈ Sα(A). Then we can take a f ∈ L
p(.)
+ (Rn) such that Iαf ≥ 1

on A and
ρp(.) (f) < Rα,p(.) (A) + ε.

Define fε := 1
1−ε

f and T = {x ∈ R
n : Iαfε (x) > 1}. Since the Riesz potential

Iα is a lower semi-continuous function, T is open. It is easy to show that
fε (x) > f (x) for every x ∈ R

n. If x ∈ A, we reach Iαfε (x) > Iαf (x) ≥ 1 and
then A ⊂ T . Since fε ∈ Sα(T ) and

1
1−ε

> 1, we have
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Rα,p(.) (T ) ≤

(

1

1− ε

)p+
[

Rα,p(.) (A) + ε
]

.

This yields Rα,p(.) (T ) ≤ Rα,p(.) (A) as ε −→ 0. It can be shown that T is an
open set and A ⊂ T. By the definition of the infimum

inf
A⊂U
U open

Rα,p(.) (U) ≤ Rα,p(.) (T ) <
1

1− ε
Rα,p(.) (A) +

ε

1− ε
.

The proof is completed by (1) and previous inequality as ε −→ 0.

The previous theorem shows us that the Riesz (α, p (.))-capacity is an outer
capacity. Then the capacity of a set A ⊂ R

n can be provided by approximating
with open sets from the outside.

Theorem 4. If A and B are the subsets of Rn, then

Rα,p(.) (A ∪B) +Rα,p(.) (A ∩B) ≤ Rα,p(.) (A) +Rα,p(.) (B) .

Proof. Let ε > 0. Choose f ∈ Sα(A) such that ρp(.) (f) ≤ Rα,p(.) (A)+ε, and

g ∈ Sα(B) such that ρp(.) (g) ≤ Rα,p(.) (B)+ ε. Then we get that f ∈ L
p(.)
+ (Rn)

such that f ≥ 1 on A, and g ∈ L
p(.)
+ (Rn) such that g ≥ 1 on B. Then it is easy

to see that max (f, g) ≥ 1 on A ∪B and min (f, g) ≥ 1 on A ∩B. Thus we get
that max (f, g) ∈ Sα(A ∪B), min (f, g) ∈ Sα(A ∩B). Moreover,

∫

Rn

|max (f, g) (x)|p(x) dx+

∫

Rn

|min (f, g) (x)|p(x) dx

=

∫

Rn

|f (x)|p(x) dx+

∫

Rn

|g (x)|p(x) dx.

By the definition of Riesz (α, p (.))-capacity, we have

Rα,p(.) (A ∪B) +Rα,p(.) (A ∩B) ≤ Rα,p(.) (A) +Rα,p(.) (B) + 2ε.

The claim follows as ε −→ 0.

Theorem 5. Let Ks is a decreasing sequence of compact subsets of Rn

for s ∈ N. Then

lim
s−→∞

Rα,p(.) (Ks) = Rα,p(.)

(

∞
⋂

s=1

Ks

)

.
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Proof. It is obvious that the inclusion
∞
⋂

s=1
Ks ⊂ Ks satisfies for all s ∈

N. This yields Rα,p(.)

(

∞
⋂

s=1
Ks

)

≤ Rα,p(.) (Ks) for all s ∈ N by the mono-

tonicity of the Riesz (α, p (.))- capacity. This shows that decreasing family
{

Rα,p(.) (Ks)
}

s∈N
is bounded below with Rα,p(.)

(

∞
⋂

s=1
Ks

)

. Hence, we have

lim
s−→∞

Rα,p(.) (Ks) = inf
s∈N

Rα,p(.) (Ks) ≥ Rα,p(.)

(

∞
⋂

s=1

Ks

)

(2)

Now, let
∞
⋂

s=1
Ks ⊂ U and U is open. Since

∞
⋂

s=1
Ks is compact as well, there is a

positive integer k such that Ks ⊂ U for all s ≥ k. It follows by the monotonicity
of the Riesz (α, p (.))-capacity that

lim
s−→∞

Rα,p(.) (Ks) ≤ Rα,p(.) (U) .

If we consider the meaning of the infimum and the fact that Rα,p(.) is an outer
capacity, then we get

lim
s−→∞

Rα,p(.) (Ks) ≤ inf
∞⋂

s=1

Ks⊂U

U is open

Rα,p(.) (U) = Rα,p(.)

(

∞
⋂

s=1

Ks

)

. (3)

The claim is obvious by (2) and (3).

Theorem 6. If (As)s∈N ⊂ R
n withRα,p(.) (As) = 0, thenRα,p(.)

(

∞
⋃

s=1
As

)

=

0.

Proof. Let 0 < ε < 1 be given. By the hypothesis, since
Rα,p(.) (As) = 0, we can choose fs ∈ Sα (As) such that ρp(.) (fs) ≤

ε
2s . Define a

function f = sups∈N fs. Because of the fact that fs (x) ≤ f (x) for all x ∈ R
n

and s ∈ N, we obtain Iαfs (x) ≤ Iαf (x). Let x ∈
∞
⋃

s=1
As. Thus there exists

s ∈ N such that x ∈ As and then 1 ≤ Iαfs (x) ≤ Iαf (x). If we consider the

definition of Sα, then it is clear that f ∈ Sα

(

∞
⋃

s=1
As

)

. Moreover, if we consider

the fact f (x)p(.) ≤
∞
∑

s=1
fs (x)

p(.) for all x ∈ R
n, then we have
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Rα,p(.)

(

∞
⋃

s=1

As

)

≤

∫

Rn

(

∞
∑

s=1

|fs (x)|
p(x)

)

dx.

Since fs ∈ L
p(.)
+ (Rn) are positive measurable functions for every s ∈ N, we

get that Rα,p(.)

(

∞
⋃

s=1
As

)

<
∞
∑

s=1

ε
2s = ε by Beppo-Levi’s theorem. That is the

desired.

Theorem 7. Let r > 0. Then the inequality

Rα,p(.) (B (x, r)) ≤ Cmax
{

|B (x, r)|1−p− , |B (x, r)|1−p+
}

holds where the constant C depends on α, p+, p− and dimension n.

Proof. Define a function h = (2r)n−α

|B(x,r)|χB(x,r). It is easy to see that h ≥ 0

and ρp(.) (h) < ∞, and hence h ∈ L
p(.)
+ (Rn) . From the definition of the Riesz

(α, p (.))-capacity, we obtain

Iαh (z) =
(2r)n−α

|B (x, r)|

∫

B(x,r)

dy

|z − y|n−α

for every z ∈ B (x, r) . If we consider the facts that z ∈ B (x, r) and y ∈ B (x, r) ,
then we have |z − y| ≤ |z − x| + |x− y| < 2r. Thus, we have h ∈ Sα(B (x, r)).

Hence, the desired inequality is satisfied for C = max
{

(2r)(n−α)p− , (2r)(n−α)p+
}

.

Theorem 8. Assume that f ∈ L
p(.)
+ (Rn). Then the inequality

Rα,p(.) ({x ∈ R
n : Iαf (x) > λ}) ≤ max

{

λ−p+ , λ−p−
}

ρp(.) (f)

is satisfied for 0 < λ < ∞.

Proof. Let f ∈ L
p(.)
+ (Rn) and 0 < λ < ∞. Denote fλ := f

λ
and T :=

{x ∈ R
n : Iαf (x) > λ} . Thus we have Iαfλ (x) > 1 for all x ∈ T that is fλ ∈

Sα (T ) . This follows the claim.

Theorem 9. Let A ⊂ R
n. Then Rα,p(.) (A) = 0 if and only if there exists

f ∈ L
p(.)
+ (Rn) such that Iαf (x) = ∞ for every x ∈ A.
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Proof. First, assume that Rα,p(.) (A) = 0. By the definition of the Riesz

(α, p (.))- capacity we can take fs ∈ Sα(A) such that ρp(.) (fs) < 1
2s for each

integer s. Denote f :=
∞
∑

s=1
fs. If we consider the fact f (x)p(.) ≤

∞
∑

s=1
fs (x)

p(.) for

all x ∈ R
n and the Beppo-Levi’s theorem, then we have

ρp(.) (f) ≤
∞
∑

s=1

ρp(.) (fs) <
∞
∑

s=1

1

2s
< ∞.

Thus f ∈ L
p(.)
+ (Rn) . Since fs ∈ L

p(.)
+ (Rn), it is clear that the function fs(y)

|x−y|n−α is

a positive measurable function for every s ∈ N. Again by Beppo-Levi’s theorem,

we have Iαf (x) =
∞
∑

s=1
Iαfs (x) .If we consider the fact that fs ∈ Sα(A), then

Iαf (x) = ∞ on A.

Now, suppose that there exists f ∈ L
p(.)
+ (Rn) such that Iαf (x) = ∞ for

every x ∈ A. Then we have

Rα,p(.) (A) ≤ Rα,p(.) ({x ∈ R
n : Iαf (x) > λ})

≤ max
{

λ−p− , λ−p+
}

ρp(.) (f)

for every λ > 0 by Theorem 8. The claim follows by letting λ −→ ∞.

Corollary 10. If f, g, h ∈ Lp(.) (Rn), then

Iα (f + g) = Iα (f) + Iα (g) , Rα,p(.) − q.e.

and

Iα (λh) = λIα (h) , Rα,p(.) − q.e.

for every λ finite constant.

Now we will investigate several convergence results of Riesz (α, p (.))-capacity.

Definition 11. A sequence {fs} converges to f in sense to capacity if

lim
s−→∞

Rα,p(.) ({x ∈ R
n : |fs (x)− f (x)| ≥ ε}) = 0

for all ε > 0. Also, this convergence is denoted by fs −→ f in Rα,p(.).

Theorem 12. Suppose that {fs} ⊂ L
p(.)
+ (Rn) and f ∈ L

p(.)
+ (Rn) . Each of

following statements is a consequence of the previous one:
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(i) fs −→ f in Lp(.) (Rn)

(ii) Iαfs −→ Iαf in Rα,p(.)

(iii) There exists a subsequence {fst} ⊂ {fs} such that Iαfst −→ Iαf pointwise
Rα,p(.)−q.e.

Proof. Let ε > 0. Using the Theorem 9, the potentials Iαfs and Iαf are
finite Rα,p(.)−q.e. If we consider Corollary 10 and Theorem 8, respectively, then
we have

Rα,p(.) ({x ∈ R
n : |Iαfs (x)− Iαf (x)| ≥ ε}) ≤ ε−p+ρp(.) (fs − f) .

Also, it is known that convergence in norm implies convergence in modular.
This shows that (i) implies (ii).

Now assume that Iαfs −→ Iαf in Rα,p(.). Let ε := 1
2t > 0 for every t ∈ N.

Then there exists a subsequence {fst} ⊂ {fs} such that

Rα,p(.)

({

x ∈ R
n : |Iαfst (x)− Iαf (x)| ≥

1

2t

})

<
1

2t

Denote At :=
{

x ∈ R
n : |Iαfst (x)− Iαf (x)| > 1

2t

}

and

A :=
∞
⋂

k=1

∞
⋃

t=k

At. It is easy to show that A ⊂
∞
⋃

t=k

At for all k. It follows by the

monotonicity property of the Riesz (α, p (.))-capacity that

Rα,p(.) (A) ≤ Rα,p(.)

(

∞
⋃

t=k

Aj

)

≤
∞
∑

t=k

Rα,p(.) (At) ≤
∞
∑

t=k

1

2t

for all k. Hence, the upper limit set A has zero capacity. If x ∈ R
n − A, then

there is a k = k (x) such that x ∈ R
n −At for t ≥ k. Thus

|Iαfst (x)− Iαf (x)| ≤
1

2t

for t ≥ k. Taking the limit from the last inequality letting t −→ ∞, we have
Iαfst (x) −→ Iαf (x) for x ∈ R

n −At. Hence the proof is completed.

Definition 13. Let (X, ‖.‖) be a normed space and X ′ is the dual of
the X. A sequence (xn) converges weakly to x0 if f (xn) converges strongly
to f (x0) for all f ∈ X ′ and n ∈ N. This convergence denoted by xn −→ x

weakly or xn ⇀ x. Also, it is known that every subsequence of a the weakly
convergence sequence converges weakly to same vector, see [7], [16].
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Definition 14. A normed space X has the Banach-Saks property if

1
t

t
∑

s=1
gs −→ g whenever gs −→ g weakly, see [6]. Moreover, every uniformly

convex space has the Banach–Saks property by [9].

Theorem 15. If {fs} ⊂ Lp(.) (Rn) and f ∈ Lp(.) (Rn), then

(i) If fs −→ f weakly in Lp(.) (Rn) , then

lim inf
s−→∞

Iαfs ≤ Iαf ≤ lim sup
s−→∞

Iαfs, Rα,p(.) − q.e.

(ii) If fs −→ f weakly in L
p(.)
+ (Rn) , then

Iαf ≤ lim inf
s−→∞

Iαfs

and

Iαf = lim inf
s−→∞

Iαfs, Rα,p(.) − q.e.

Proof. (i) Since the space Lp(.) (Rn) is a uniformly convex space [10], one
has Banach-Saks property and there exists a subsequence {f∗

s } can find
such that a sequence {hm} , where

hm :=
1

m

m
∑

s=1

f∗
s ,

converges strongly to f in Lp(.) (Rn) . If we consider the Theorem 12, then
we can find a subsequence {h∗m} such that

Iαf = lim
m−→∞

Iαh
∗
m, Rα,p(.) − q.e.

This yields

Iαf = lim
m−→∞

Iαh
∗
m ≥ lim inf

s−→∞
Iαfs, Rα,p(.) − q.e. (4)

If we replace fs and f by −fs and −f, respectively in (4), then we have

lim inf
s−→∞

Iα (−fs) ≤ Iα (−f) , Rα,p(.) − q.e.

or
Iαf ≤ lim sup

s−→∞
Iαfs, Rα,p(.) − q.e. (5)

The claim is valid by (4) and (5).
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(ii) Since the Riesz potential Iα is lower semi-continuous, we have

Iαf ≤ lim inf
s−→∞

Iαfs (6)

where fs −→ f weakly in L
p(.)
+ (Rn) . Moreover, the inequality

lim inf
s−→∞

Iαfs ≤ Iαf, Rα,p(.) − q.e. (7)

holds by the (i). If we consider the inequalities (6) and (7), then the proof
is completed.

Theorem 16. The Riesz (α, p (.))-capacity is a Fatou capacity.

Proof. Let As is a increasing sequence of subsets of R
n for s ∈ N. It is

clear that As ⊂
∞
⋃

s=1
As for all s ∈ N. Note first that monotonicity of the Riesz

(α, p (.))-capacity yields that

lim
s−→∞

Rα,p(.) (As) ≤ Rα,p(.)

(

∞
⋃

s=1

As

)

.

To prove the opposite inequality, we can suppose that
lims−→∞Rα,p(.) (As) < ∞. Otherwise the proof is obvious. Let fs ∈ Sα (As) be
given for s ∈ N. Thus by the meaning of the infimum fs ≥ 0 is the function
such that

ρp(.) (fs) ≤ Rα,p(.) (As) +
1

s
.

Thus {fs}s∈N is bounded in Lp(.) (Rn) and there exists a subsequence {fst}t∈N
that converges weakly to a function f ∈ L

p(.)
+ (Rn) , see [16]. Since fs ∈ Sα (As) ,

we get that Iαfs ≥ 1 on As. Using the theorem 15 (ii), we obtain

Iαf ≥ 1 on
∞
⋃

s=1

As, Rα,p(.) − q.e.

Again if we consider the Theorem 15 (ii), then there exists a set B ⊂
∞
⋃

s=1
As

with Rα,p(.)

(

∞
⋃

s=1
As −B

)

= 0 such that Iαf ≥ 1 on B, that is f ∈ Sα (B) .

Since the Riesz (α, p (.))-capacity is an outer measure, we get Rα,p(.)

(

∞
⋃

s=1
As

)

=
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Rα,p(.) (B). It is known that ρp(.) modular function is lower semi-continuous,
see [6]. Hence we have

Rα,p(.)

(

∞
⋃

s=1

As

)

≤ lim inf
t−→∞

ρp(.) (fst) ≤ lim
s−→∞

Rα,p(.) (As) .

Corollary 17. Let {As}s∈N is a subset of Rn. Then

Rα,p(.)

(

lim inf
s−→∞

As

)

≤ lim inf
s−→∞

Rα,p(.) (As) .

Proof. Denote B := lim infs−→∞As =
∞
⋃

t=1

∞
⋂

k≥t

Ak and Bs :=
s
⋃

t=1

∞
⋂

k≥t

Ak. It is

easy to see that Bs ⊂ Bs+1 ⊂ ... Moreover, we have

∞
⋃

s=1

Bs =

∞
⋃

s=1





s
⋃

t=1

∞
⋂

k≥t

Ak



 =

∞
⋃

t=1

∞
⋂

k≥t

Ak = B.

Since the Riesz (α, p (.))- capacity is a Fatou capacity,

Rα,p(.) (B) = lim
s−→∞

Rα,p(.) (Bs) ≤ lim inf
s−→∞

Rα,p(.) (As) .

That is the desired.

A set function which satisfies the hypothesis of Theorem 2, Theorem 5 and
Theorem 16 is called Choquet capacity, see [5]. Hence we get the following
result.

Corollary 18. The set function A −→ Rα,p(.) (A) , A ⊂ R
n, is a Choquet

capacity. In particular, all Borel sets A ⊂ R
n are capacitable, that is,

Rα,p(.) (A) = inf
A⊂U
U open

Rα,p(.) (U) = sup
K⊂A

K compact

Rα,p(.) (K) .
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