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Abstract: In this paper, we study a capacity theory based on a definition of
a Riesz potential in the Euclidean space. Also, we define the Riesz (o, p(.))-
capacity and discuss the properties of the capacity in the variable exponent
Lebesgue space LPU)(R™).
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1. Introduction

The interest in the variable exponent Lebesgue spaces has increased since the
1990s because of their use in a variety of applications such as mathematical
modeling of electrorheological fluids, calculus of variations, differential equa-
tions with non-standard growth etc.

The study of variable exponent function spaces in higher dimensions was
presented in 1991 an article by Kovacik and Rékosnik [10]. They investigated
some basic properties of the variable exponent Lebesgue space Lp(')(R”) and
the Sobolev space W*P() (R™) such as reflexivity and Holder inequalities.

Since the variable exponent Lebesgue spaces is not invariant with respect
to translations, convolution operators do not behave well in the spaces. For
example, the Young theorem is not valid in general in the space Lp(')(]R"), see
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[14]. Also, the translation operator is not continuous and the convolution with
g € LY(R™) is not continuous as well in general, i.e. the inequality || f * g|| o) <
Cllfll,ey llglly is not satisfy in general.

The Riesz kernel I, for 0 < o < n, is defined as

1
I — a—n
N AL
3200 (3)
(33

R™ is defined by the convolution

where 7 (a,n) = . The Riesz potential of a measurable function f on

* xTr) = ! f(y) see
o f (z) V(Q’”)RZ |x_y|nfady, [16].

In this paper, we will omit the value of ﬁ since it is not crucial for our

purpose. Throughout his paper, we call the convolution I, * f simply I, f.

In R™, the capacity theory for the Riesz and Bessel potential can be found in
[2], [3], [11] and [12]. The notion of capacity presents a standard way to describe
exceptional sets in many different function spaces. A part of the theory for Riesz
and Bessel capacity follows from general results in [8] and [15]. These capacities
are very convenient in the function theory for the Sobolev spaces and in the
theory of partial differential equations. The applications of these set functions
need either a comprehensive knowledge for the exceptional sets or estimate on
the rate at which the capacity of a sequence of bounded sets tends to zero.
Moreover, they can determine existence of the Sobolev functions and solution
for elliptic partial differential equations, as an application see [1].

Nuutinen and Silvestre defined a Riesz capacity in metric spaces in [13].
They studied the fundamental properties of this capacity such as monotonicity,
convergence results, relationship between the Hausdorff measure. Our purpose
is to investigate the Riesz capacity in n-dimensional Euclidean space R™, n > 2
to the variable exponent case.

2. Notation and Preliminaries

We denote by R™ the Euclidean space of dimension n > 2. For z € R"™ and
r > 0 we denote the open ball with center z and radius r by B (z,r). The
measure y is doubling if there is a fixed constant ¢4 > 1, called the doubling
constant of p such that

(B (20,2r)) < cqp (B (20,7))
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for every ball B (xg,r) in R". The space C5°(R") is the space of all infinitely
differentiable functions with compact support. We denote the family of all
measurable functions p(.) : R™ — [1,00) (called the variable exponent on R™)
by the symbol P (R™). In this paper, the function p(.) always denotes a variable
exponent. For p(.) € P (R"™), put

p~ = ess infp(x), pT = ess supp(x).
:EGR" :EGR"

For every measurable functions f on R™ we define the function

op()(f) = / 1f(2)P® da.
Rn

The function gy is convex modular. LPO(R") is denoted as the set of all
(equivalence classes) measurable functions f on R™ such that g,()(Af) < oo for
some A > 0, equipped with the Luxemburg norm

11,0y = {30+ (%) <1}

If p* < oo, then f € LPO(R") iff 0p()(f) < 0o. The set LPO)(R") is a Banach
space with the norm ||.||, ). If p(.) = p is a constant function, then the Lux-

emburg coincides with the usual LP—norm. We denote by LT')(R") the subset
of LPL)(R™) of non-negative functions. The space L}, (R™) is to be space of all
measurable functions f on R” such that f.xx € L' (R") for any compact subset
K Cc R".

Nuutinen and Silvestre defined a metric type of the Riesz potential of order
v such that 0 < v < 1 and

_ f(y)
WO - [ W

X

where the metric space (X, d) equipped with a doubling measure p. The Riesz
(v,p) — capacity of a set £ C X denoted by

C.,,(E)= inf P
v (E) féEl(E)”f”P’

where

RE)={feLlf(X):1,f>1on E}, see[13].
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o0
Let Ay € Ay C ... C R" and A = |J A;. If the convergence satisfies

=1
C (4;) — C(A), the capacity C' is called Fatou capacity. We also say that a
property holds C' — g.e. on R” if it holds for all z € R" except those in a set
with C (E) = 0, see [4], [11].

3. The Riesz (a,p(.))-Capacity

Throughout his paper, we will assume that 1 < p~ < p(.) <pT <n < oo and
0 < a < n. The usual Riesz potential I, f : R — [0,00] is defined by the

integral
nf ) = [ LYy

S ey

for f measurable function with f > 0. To define a capacity we denote
Su(A) = {f e I"Y(®R™) : I,f > 1 on A} .
for the set A C R™. The Riesz (a,p(.))- capacity of A is defined by

A) = inf .
Ra,p(.) ( ) fegi(A) Pp() (f)

The following theorem is well known by [12].

Theorem 1. If f is a non-negative function, then I.f is a lower semi-
continuous function.

Theorem 2. The Riesz (o, p(.))-capacity is an outer measure.

Proof. By the meaning of the infimum, we get

R = inf = 0.
ap() () sanf g, Pr0) (f)

Let Ay C Ay and f (x) € Sa(A1). Then the inclusion
{f e IP®R™) : I,f > 1 on Ag}c{f e IP(®R™) : I,f > 1 on Al}

holds. Thus the Riesz (o, p(.))- capacity satisfies monotonicity. Now, we will
prove the countable subadditivity condition. Assume that {As}.2, be a se-

oo o0
quence and A = [J A,. Also, we can assume that ) R, ) (4s) < oo ie.
s=1 s=1
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Rop() (As) < oo for every s € N. Otherwise the proof is clear. Let ¢ > 0.
Again using the meaning of the infimum we can choose fs € S,(As) such that

3
Pp(.) (f) < Ra,p(.) (AS) + §

Denote f := supyy fs. It is clear that (f (2))PY) < 3 (fs ()P for all z € R™.
s=1

Since fs € LfL(') (R™) are positive measurable functions for every s € N,
o) (F) D Rap() (As) +e.
s=1

Because of the fact that fs (x) < f(x) for all x € R” and s € N, we write that

Infs(x) < Inf (z). Let x € |J As. Thus there exists s € N such that © € A,
=1

s=

and then 1 < I, f, () < I,f (z). If we consider the definition of R,, it is clear
that f € S, (U AS>. This yields
s=1

Rap() (U As) <D Rap() (As) + .
s=1 s=1

This completes the proof as ¢ — 0. U

Theorem 3. If A is a subset of R", then

Rap(y (A) = Inf Ray) (U).
U open

Proof. Let A C U such that U is open. Using the monotonicity property of
the Riesz (a, p (.))-capacity,
Ry p)(A) < inf R,y (U). (1)

AcCU
U open

Now, we can suppose that R, ) (A4) < oo. Otherwise the proof is clear. Let

0<e<land f € S,(A). Then we can take a f € LT')(R") such that I, f > 1
on A and

Pp(.) (f) < Ra,p(.) (A) + €.

Define f. := ;- f and T = {z € R" : I, f. (z) > 1}. Since the Riesz potential
1, is a lower semi-continuous function, 7" is open. It is easy to show that
fe(z) > f(z) for every x € R". If x € A, we reach I, f: (x) > I,f (x) > 1 and
then A C T. Since f. € So(T) and & > 1, we have
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+

Rop() (T) < (1 i 5> [Ra,p(-) (A) + 5] .

This yields R, ) (1) < Rqp()(A) as € — 0. It can be shown that 7" is an
open set and A C T. By the definition of the infimum

. 1 €
ot Rap) (U) < Rap() (T) < 7= Rapy (A + 7
U open
The proof is completed by (1) and previous inequality as e — 0. O

The previous theorem shows us that the Riesz (o, p (.))-capacity is an outer
capacity. Then the capacity of a set A C R™ can be provided by approximating
with open sets from the outside.

Theorem 4. If A and B are the subsets of R", then
Ra,p(-) (A U B) + R%p(.) (A M B) < R%p(') (A) + R%p(') (B) .
Proof. Let ¢ > 0. Choose f € S, (A) such that p,() (f) < Rap() (A)+e, and

g € Sa(B) such that py)(9) < R p() (B) +¢. Then we get that f € Lljr(') (R™)

such that f > 1on A, and g € Li() (R™) such that g > 1 on B. Then it is easy
to see that max (f,g) > 1 on AU B and min (f,g) > 1 on AN B. Thus we get
that max (f,g) € So(AU B), min (f,g) € So(AN B). Moreover,

/ jmax (£, 9) (2) /) da + / jmin (, ) (2)]"@ da

/ 1 (@)@ da + / g (@) de.

By the definition of Riesz (a, p (.))-capacity, we have
Ra,p(-) (A U B) + Ra,p() (A N B) < Ra’p(.) (A) + Ra,p(.) (B) + 2¢e.

The claim follows as € — 0. O

Theorem 5. Let K, is a decreasing sequence of compact subsets of R™
for s € N. Then

Jim R ) (5s) = Rap() <ﬂ K )
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(o]
Proof. 1t is obvious that the inclusion [ Ky C K satisfies for all s €

s=1
N. This yields R, p.) (ﬂ Ks) < Rap() (K) for all s € N by the mono-
s=1
tonicity of the Riesz (a,p(.))- capacity. This shows that decreasing family
{R } ¢y is bounded below with R, , ( N K ) Hence, we have

Jm Ry (Ks) = inf Ra p() () 2 Rap) <ﬂ K ) (2)

7p

[e.e] [ee]
Now, let (| K5 C U and U is open. Since (| K, is compact as well, there is a
s=1 s=1
positive integer k such that Ky C U for all s > k. It follows by the monotonicity
of the Riesz (a, p(.))-capacity that

lim R, ) (Ks) < Rap) (U).

§—00

If we consider the meaning of the infimum and the fact that R, ;) is an outer
capacity, then we get

Sh_r>nooR p(.) (Ks) < - inf Ra,p(.) (U) = Ra,p(.) (ﬂ Ks> . (3)
N KsCU s=1
S(jlis open
The claim is obvious by (2) and (3). O

Theorem 6. If(As),cy C R" with R, .y (As) = 0, then R, () ( U AS) =
s=1
0.

Proof. Let 0 < e < 1 be given. By the hypothesis, since
Rq p() (As) = 0, we can choose fs € S, (As) such that pp (fs) < 5. Define a
function f = sup,cy fs. Because of the fact that f, (x ) f( ) for all z € R”
and s € N, we obtain I, fs(z) < I,f (x). Let z € U As. Thus there exists
=1
s € N such that x € As and then 1 < I, fs(z) < I, f( ). If we consider the

definition of S, then it is clear that f € S, ( U AS). Moreover, if we consider
s=1

the fact f (z)) < 3O f, (#)P") for all 2 € R™, then we have
s=1
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Rop() (U As> < / (Zm <:c>|”<“> dx.
s=1 s=1

Rn
Since f, € Lﬂ(') (R™) are positive measurable functions for every s € N, we
oo [e.e]
get that R, () (U AS> < Y. 55 = € by Beppo-Levi’s theorem. That is the
s=1 s=1
desired. O

Theorem 7. Let r > 0. Then the inequality
Rop(y (B (2,7)) < Cmax {|B (2,1)[7,|B (@,0)]' 7"}
holds where the constant C' depends on «, p*, p~— and dimension n.

2r)" T

Proof. Define a function h = WXB(%T)' It is easy to see that h > 0

and py,( (h) < oo, and hence h € Lljr(') (R™). From the definition of the Riesz
(ar, p (.))-capacity, we obtain

(2r)" " =
Iah = — _
O=Bwn | oy

for every z € B (x,r) . If we consider the facts that z € B (z,r) andy € B (z,r),
then we have |z — y| < |z — z| + |z — y| < 2r. Thus, we have h € Sy (B (z,7)).

Hence, the desired inequality is satisfied for C' = max {(27")("70‘)1” o (2r) e ’ } .

Theorem 8. Assume that f € Lljr(')(]R"). Then the inequality

Rap(y (fr € R Luf (2) > A}) < max X7 X7} gy (f)

is satisfied for 0 < A < oo.

Proof. Let f € LT')(R”) and 0 < A < oo. Denote fy := § and T :=
{r e R": I,f (x) > A\}. Thus we have I, f) (x) > 1 for all z € T that is f) €
Sa (T') . This follows the claim. O

Theorem 9. Let A CR". Then R, (A) =0 if and only if there exists
fe LT')(R") such that I, f (x) = oo for every x € A.
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Proof. First, assume that R, ,)(A) = 0. By the definition Of the Riesz
(c,p(.))- capacity we can take fs € S,(A) such that p,)(fs) < Q—g for each

integer s. Denote f := Z fs. If we consider the fact f (z)P") < Z fs(x ) ) for
all x € R and the Beppo Levi’s theorem then we have

o0

pp() (f) < pr(.) (fs) < Z% < 0.

s=1

Thus f € Lp() (R™). Since f € Lp( )(R”) it is clear that the function —=¥_ s

‘ ‘na

a positive measurable function for every s € N. Again by Beppo-Levi’s theorem,
o0

we have I,f (x) = > Iofs (z) If we consider the fact that fs € So(A), then
s=1

If (x) = o0 on A.
Now, suppose that there exists f € LT')(R”) such that I, f (z) = oo for
every x € A. Then we have

a,p(.) (A) < Ra,p(.) ({‘T €eR"™: Iaf (.’E) > )‘})
< max {A_pf : A_p+} pp() (f)

for every A > 0 by Theorem 8. The claim follows by letting A — oo. O

R

Corollary 10. If f, g,h € LP0) (R™), then

Ia (f + g) = Ia (f) + Ia (g) ) Ra,p(.) —qg.e.

and
I, (Ah) = A, (h), R p) — q-e

for every X finite constant.
Now we will investigate several convergence results of Riesz (o, p (.))-capacity.

Definition 11. A sequence {fs} converges to f in sense to capacity if

lim Ry, ({z € R :|fs(z) = f(2)] = €}) =0

§—00

for all € > 0. Also, this convergence is denoted by fs — f in R, ()-

Theorem 12. Suppose that {fs} C Lﬂ(') (R™) and f € Lﬁ(') (R™). Each of
following statements is a consequence of the previous one:
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(i) fs — [ in PO (R")
(i1) Iofs — Iof in Ry p()

(111) There exists a subsequence {fs,} C {fs} such that 1o fs, — 1o f pointwise
R p()—q-e

Proof. Let € > 0. Using the Theorem 9, the potentials I, fs and I, f are
finite R, ,,(.)—q-.e. If we consider Corollary 10 and Theorem 8, respectively, then
we have

Ropy ({2 €R™ : [Iofs (@) = Lof ()] 2 €}) <7 py) (fs — f).

Also, it is known that convergence in norm implies convergence in modular.
This shows that (i) implies (7).

Now assume that I, fs — [of in R, p(). Let € := % > 0 for every ¢t € N.
Then there exists a subsequence {fs,} C {fs} such that

Ra,p(,)<{xeRni\Iaf5t($) Iz 5} <5

Denote At ={z eR": [Iofs, (x) — Inf (z)| > 3} and

ﬂ U A;. It is easy to show that A C U A, for all k. It follows by the
k=1t=k
monotonicity property of the Riesz (o, p (.))-capacity that

o0 00 1
Rap() (A) < Rap() <U AJ) = ZRa p() (Ar) < Z ot
t=k t=k =k

for all k. Hence, the upper limit set A has zero capacity. If x € R" — A, then
there is a k = k (z) such that x € R" — A; for ¢t > k. Thus

1
[Lafsi (x) = Inf (z)| < of
for t > k. Taking the limit from the last inequality letting ¢ — oo, we have
Infs, (x) — Iof (z) for x € R™ — A;. Hence the proof is completed. O

Definition 13. Let (X,]|.||) be a normed space and X’ is the dual of
the X. A sequence (x,) converges weakly to xg if f(x,) converges strongly
to f(xg) for all f € X’ and n € N. This convergence denoted by z, — =
weakly or x, — z. Also, it is known that every subsequence of a the weakly
convergence sequence converges weakly to same vector, see [7], [16].
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Definition 14. A normed space X has the Banach-Saks property if

t
% > gs — g whenever g, — g weakly, see [6]. Moreover, every uniformly
s=1

convex space has the Banach—Saks property by [9].

Theorem 15. If {f,} ¢ LPV) (R™) and f € LP() (R™), then
(i) If f¢ — f weakly in LPC) (R™) | then

lim inf Iafs < Iaf < lim sup Iafs: Ra p() — ¢-€
S§——00 S—00 '

i) If fs — f weakly in LP) (R"), then
+
If <lim inf I,fs
S§—— 00
and

Iof =lim inf Iofs,  Rap() — e
§—>00

Proof. (i) Since the space LP() (R™) is a uniformly convex space [10], one
has Banach-Saks property and there exists a subsequence {f*} can find
such that a sequence {h,,}, where

1 m
hm ::_Zf;ku
ms:l

converges strongly to f in LP() (R™) . If we consider the Theorem 12, then
we can find a subsequence {h7,} such that

Iaf - mhi{loo Iahma Ra,p(.) —g.¢.
This yields
Inf= lim I,h;, >lim inf I,fs, Ropy — q-e. (4)
m—>00 s§—>00 ’
If we replace fs and f by —fs and — f, respectively in (4), then we have

lim inf Io(—fs) < la(=f), Rop) — a-e.

S

or
If <lim sup I,fs, Ra,p(.) —g.e. (5)

§—00

The claim is valid by (4) and (5).
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(ii) Since the Riesz potential I, is lower semi-continuous, we have

I,f <lim inf I,f; (6)
§—>00

where fy — [ weakly in Lﬁ(') (R™) . Moreover, the inequality
lim ngoo Infs < I.f, Rop() — g-e. (7)

holds by the (i). If we consider the inequalities (6) and (7), then the proof
is completed.
U

Theorem 16. The Riesz («,p(.))-capacity is a Fatou capacity.

Proof. Let Ag is a increasing sequence of subsets of R™ for s € N. It is

o0
clear that A; C |J As for all s € N. Note first that monotonicity of the Riesz

s=1
(a, p (.))-capacity yields that

Jim R0 (As) < R (U1 As) :

To prove the opposite inequality, we can suppose that

lims 00 Ry p() (As) < 0o. Otherwise the proof is obvious. Let fs € Sq (As) be
given for s € N. Thus by the meaning of the infimum fys > 0 is the function
such that

1
Pp(.) (fs) < Ra,p(.) (As) + S

Thus {fs},cy is bounded in LP0) (R™) and there exists a subsequence { fs, },cxy

that converges weakly to a function f € Li(') (R™), see [16]. Since fs € Sy (As),
we get that I, fs > 1 on A,. Using the theorem 15 (ii), we obtain

I,f>1on U Asg, Reop) — ge
s=1

o0
Again if we consider the Theorem 15 (ii), then there exists a set B C [J As
s=1

o
with Rg () <U Ag — B> = 0 such that I,f > 1 on B, that is f € S, (B).
s=1

[e.e]
Since the Riesz (a, p (.))-capacity is an outer measure, we get R, p.) < U AS> =
s=1
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Rap) (B). It is known that pp(.) modular function is lower semi-continuous,
see [6]. Hence we have

Ra,p(.) (U AS> S hmtgfoo pp() (fSt) S lim Ra,p(.) (AS) .
s=1

§—00

Corollary 17. Let {As} .y is a subset of R™. Then

Ra,p(.) (hm sgfoo AS> S lim sgfoo Rmp(') (AS) .

oo S o0
Proof. Denote B :=liminfs_ oo As = |J [ Ax and B :== |J () Ag. It is
t=1k>t t=1 k>t
easy to see that B; C Bsy1 C ... Moreover, we have

(0.] o0 S o0 oo D
Us.=U{UN4a)=UN4a4=5
s=1 s=1 \t=1 k>t t=1k>t

Since the Riesz (o, p (.))- capacity is a Fatou capacity,

Rop(y(B) = lim Ry, (Bs) <lim inf R, (A).

§—>00 N §—00
That is the desired. O
A set function which satisfies the hypothesis of Theorem 2, Theorem 5 and

Theorem 16 is called Choquet capacity, see [5]. Hence we get the following
result.

Corollary 18. The set function A — R, ;) (A), A CR", is a Choquet
capacity. In particular, all Borel sets A C R™ are capacitable, that is,

Rope) (A) = Inf Rap)(U) = sub - o) (K).
U open K compact
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