ALGORITHMS AND IDENTITIES FOR BIVARIATE
(h1, h2)-BLOSSOMING

Abstract

We extend the definition of $h$-blossoming for polynomials in one variable to the polynomials in two variables, and we use this bivariate $(h_1, h_2)$-blossoming to study various properties, identities, and algorithms associated with $(h_1, h_2)$-Bézier surfaces. We construct a recursive $(h_1, h_2)$-midpoint subdivision algorithm for the $(h_1, h_2)$-Bézier surfaces and we prove its geometric rate of convergence.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 30
Issue: 4
Year: 2017

DOI: 10.12732/ijam.v30i4.5

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] R. Goldman, Pólya's urn model and computer aided geometric design, SIAM J. Alg. Disc. Meth., 6 (1985), 1-28.
  2. [2] R. Goldman, Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling, Morgan Kaufman Publishers, Academic Press (2002).
  3. [3] R. Goldman, P. Barry, Shape parameter deletion for Pólya curves, Numer. Algorithms, 1 (1991), 121-137.
  4. [4] I. Jegdić, J. Larson, P. Simeonov, Algorithms and identities for (q, h)-Bernstein polynomials and (q, h)-Bézier curves - a non-blossoming approach, Anal. Theory Appl., 32 (2016), 373-386.
  5. [5] I. Jegdić, P. Simeonov, V. Zafiris, Quantum q-Bézier surfaces based on bivariate q-blossoming, Preprint.
  6. [6] H. Oruç, G.M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc., 42 (1999), 403-413.
  7. [7] H. Oruç, G.M. Phillips, q-Bernstein polynomials and Bézier curves, J. Comput. Appl. Math., 151 (2003), 1-12.
  8. [8] G.M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 37 (1997), 232-236.
  9. [9] G.M. Phillips, Bernstein polynomials based on q-integers, Ann. Numer. Math., 4 (1997), 511-518.
  10. [10] G.M. Phillips, A survey on the q-Bernstein polynomials, IMA J. Numer. Anal., 30 (2010), 277-288.
  11. [11] P. Simeonov, R. Goldman, Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming, Graph. Models, 74 (2012), 326-334.
  12. [12] P. Simeonov, R. Goldman, Quantum B-Splines, BIT, 53(1) (2013), 193-223.
  13. [13] P. Simeonov, R. Goldman, Quantum Bernstein bases and quantum Bézier curves, J. Comput. Appl. Math., 288 (2015), 284-303.
  14. [14] P. Simeonov, V. Zafiris, R. Goldman, h-blossoming: a new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves, CAGD, 28 (2011), 549-565.
  15. [15] P. Simeonov, V. Zafiris, R. Goldman, q-blossoming: a new approach to algorithms and Identities for q-Bernstein bases and q-ézier curves, J. Appr. Theory, 164, No 1 (2012), 77-104.
  16. [16] D. Stancu, Approximations of functions by a new class of linear polynomial operators, Rev. Roumanie Math. Pures Appl., 13 (1968), 1173-1194.
  17. [17] D. Stancu, Generalized Bernstein approximating operators, Itinerant Seminar on Functional Equations, Approximations and Convexity, Cluj-Napoca (1984), 185-192.