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1. Statement of the Problem

Given real numbers r > 0 and T > 0, we consider the closed and bounded
intervals I0 = [−r, 0] and I = [0, T ] of the real line R and let J = [−r, T ]. By
C = C(I0,R) we denote the class of continuous real-valued functions defined on
I0. We equip the vector space C with he norm ‖ · ‖C defined by

‖x‖C = sup
−r≤θ≤0

|x(θ)|. (1)

Clearly, C is a Banach space with this supremum norm and it is sometimes
called the history space of the functional differential equation in question.

For any continuous function x : J → R and for any t ∈ I, we denote by xt
the element of the space C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0. (2)

Consider the nonlinear first order quadratic hybrid functional differential equa-
tion (in short QHFDE) with a delay and maxima,

(

x(t)

f(t, x(t),X(t))

)′

+ λ

(

x(t)

f(t, x(t),X(t))

)

= g(t, x(t), xt), t ∈ I,

x0 = φ ∈ C,











(3)

where λ ∈ R, λ > 0, f : I × R × R → R \ {0} and g : I × R × C → R are
continuous functions with X(t) = max

0≤ξ≤t
x(ξ).

By a solution of the QHFDE (3) we mean a function x in the space C(J,R)
of continuous real-valued functions defined on J that satisfies (3).

The QHFDE (3) contains two different delay arguments, one is in the func-
tion f in the form of the maxima function and the other is in the function
g. Thus, this problem is new to the literature on functional differential equa-
tions. Differential equations with maxima occur in automatic regulated control
systems whereas differential equations with past history occur in several natu-
ral and physical phenomena. The details of these facts are given in Hale [21],
Myshkis [25], Magomedov [23], and the references therein. Differential equa-
tions with delay and maxima help to describe some mixed dynamic systems
involving past history and the maximum range.

The QHFDE (3) is general in the sense that it includes some important
classes of functional differential equations. If f(t, x, y) ≡ 1, then the QHFDE
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(3) reduces to the following FDE with a delay,

x′(t) + λx(t) = g(t, x(t), xt), t ∈ I,

x0 = φ,

}

(4)

and if f(t, x, y) = f(t, x), then reduces to the quadratic FDE with delay,

(

x(t)

f(t, x(t))

)′

+ λ

(

x(t)

f(t, x(t))

)

= g(t, x(t), xt), t ∈ I,

x0 = φ ∈ C.











(5)

Nonlinear functional differential equations have been studied in the litera-
ture for a long time via functional analytic methods; see Hale [21] and references
therein. Similarly, quadratic functional differential and integral equations have
also been studied for a long time; however the study gained momentum after
the development of hybrid fixed point theorems in a Banach algebra due to
Dhage [3]. But the study of FDEs via the Dhage iteration principle is rela-
tively new to the literature. Very recently, a few results in this direction were
obtained by Dhage [11] and a special class of FDEs was discussed in Dhage
[9, 10] and Dhage and Dhage [16, 17]. In this paper, we obtain existence and
approximation results for the QHFDE (3) via the Dhage iteration method and
develop an algorithm for the approximate or numerical solution. The FDE
(4) and the QHFDE (5) are also new to existence and approximation via the
Dhage iteration method. Therefore, the results of this paper includes the exis-
tence and approximation theorems for other functional differential equations as
special cases which are also new to the literature. In the following section we
give some preliminaries and auxiliary results that will be needed in the proof
of the main results in Section 3.

2. Auxiliary Results

Unless otherwise mentioned, throughout this paper we let E denote a partially
ordered real normed linear space with an order relation � and norm ‖ · ‖ in
which the addition and the scalar multiplication by positive real numbers are
preserved by � . Details on partially ordered normed linear space appear in
Dhage [5], Heikkilä and Lakshmikantham [22], and the references therein.

Two elements x and y in E are said to be comparable if either the relation
x � y or y � x holds. A non-empty subset C of E is called a chain or totally
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ordered if all the elements of C are comparable. The space E is said to be
regular if for any nondecreasing (resp. nonincreasing) sequence {xn} in E such
that xn → x∗ as n→ ∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N. Conditions
guaranteeing the regularity of E may be found in Heikkilä and Lakshmikantham
[22] and the references therein.

We need the following definitions (see Dhage [5, 6, 7] and the references
therein) in what follows.

Definition 1. A mapping T : E → E is called isotone or monotone

nondecreasing if it preserves the order relation �, that is, if x � y implies
T x � T y for all x, y ∈ E. Similarly, T is called monotone nonincreasing

if x � y implies T x � T y for all x, y ∈ E. Finally, T is called monotonic or
simply monotone if it is either monotone nondecreasing or monotone nonin-
creasing on E.

Definition 2. A mapping T : E → E is called partially continuous at a
point a ∈ E if for ǫ > 0 there exists δ > 0 such that ‖T x−T a‖ < ǫ whenever x
is comparable to a and ‖x−a‖ < δ. The mapping T called partially continuous
on E if it is partially continuous at every point of E.

It is clear that if T is partially continuous on E, then it is continuous on
every chain C contained in E.

Definition 3. A non-empty subset S of the partially ordered Banach
space E is called partially bounded if every chain C in S is bounded. An
operator T on a partially normed linear space E into itself is called partially

bounded if T (E) is a partially bounded subset of E, and it is called uniformly

partially bounded if all chains C in T (E) are bounded by a unique constant.

Definition 4. A non-empty subset S of the partially ordered Banach
space E is called partially compact if every chain C in S is a compact subset
of E. A mapping T : E → E is called partially compact if every chain C in
T (E) is a partially relatively compact subset of E, and T is called uniformly

partially compact if T is a uniformly partially bounded and partially compact
operator on E. An operator T is called partially totally bounded if for any
bounded subset S of E, T (S) is a partially relatively compact subset of E.
If T is partially continuous and partially totally bounded, then we say it is
partially completely continuous on E.
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Remark 5. Suppose that T is a nondecreasing operator on E into itself.
Then T is partially bounded or partially compact if T (C) is a bounded or
compact subset of E for each chain C in E.

Definition 6. The order relation � and the metric d on a non-empty set E
are said to be D-compatible if {xn}n∈N is a monotone (monotone nondecreas-
ing or monotone nonincreasing) sequence in E and if a subsequence {xnk

}n∈N of
{xn}n∈N converges to x∗ implies that the original sequence {xn}n∈N converges
to x∗. Similarly, given a partially ordered normed linear space (E,�, ‖ · ‖),
the order relation � and the norm ‖ · ‖ are said to be D-compatible if � and
the metric d defined by the norm ‖ · ‖ are D-compatible. A subset S of E is
called Janhavi if the order relation � and the metric d or the norm ‖ · ‖ are
D-compatible in it. In particular, if S = E, then E is called a Janhavi metric

or Janhavi Banach space.

Clearly, the set R of real numbers with the usual order relation ≤ and the
norm defined by the absolute value function | · | has this property. Similarly,
the finite dimensional Euclidean space R

n with the usual componentwise order
relation and the standard norm possesses the D-compatibility property. In
general, every finite dimensional Banach space with a standard norm and an
order relation is a Janhavi Banach space.

Definition 7. A upper semi-continuous and monotone nondecreasing
function ψ : R+ → R+ is called a D-function provided ψ(r) = 0 iff r = 0. Let
(E,�, ‖ · ‖) be a partially ordered normed linear space. A mapping T : E → E
is called partially nonlinear D-Lipschitz if there exists a D-function ψ :
R+ → R+ such that

‖T x− T y‖ ≤ ψ(‖x− y‖) (6)

for all comparable elements x, y ∈ E. If ψ(r) = k r, k > 0, then T is called
partially Lipschitz with a Lipschitz constant k.

Let (E,≤, ‖ · ‖) be a partially ordered normed linear algebra. Set

K =
{

x ∈ E | x ≥ θ, where θ is the zero element of E
}

,

which is a closed and convex subset of E. The elements of K are called the
positive vectors of the normed linear algebra E. The set K is called positive in
view of the fact that it satisfies the relation “u ·v ∈ K whenever u, v ∈ K.” The
next lemma follows immediately from the definition of the set K and is often
used in the applications of hybrid fixed point theory in Banach algebras.
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Lemma 8. (Dhage [5]) If the elements u1, u2, v1, v2 ∈ K are such that
u1 � v1 and u2 � v2, then u1u2 � v1v2.

Definition 9. An operator T : E → E is said to be positive if the range
R(T ) of T satisfies R (T ) ⊆ K.

The essential idea of the Dhage iteration principle may be described as
“the monotonic convergence of the sequence of successive approxima-

tions to the solutions of a nonlinear equation beginning with a lower

or an upper solution of the equation as its initial or first approxi-

mation.” It is a very powerful tool in existence theory in nonlinear analysis.
The procedure involved in the application of the Dhage iteration principle to
nonlinear equations is called the ”Dhage iteration method.” It is clear that
the Dhage iteration method is different for different nonlinear problems and
is also different from the usual Picard successive approximation method. The
Dhage iteration method embodied in the following applicable hybrid fixed point
theorems of Dhage [6] is used as the key tool for our work contained in this
paper. A few other hybrid fixed point theorems involving the Dhage iteration
method may be found in Dhage [6, 7, 8].

Theorem 10. (Dhage [7]) Let
(

E,�, ‖ · ‖
)

be a regular partially ordered
complete normed linear algebra such that every compact chain C of E is Jan-
havi. Let A, B : E → K be two nondecreasing positive operators such that:

(a) A is partially bounded and nonlinear partial D-Lipschitz with D-function
ψA;

(b) B is partially continuous and uniformly partially compact;

(c) MB ψA(r) < r, r > 0, where MB = sup{‖B(C)‖ : C is a chain in E};

(d) there exists an element x0 ∈ X such that x0 � Ax0 Bx0 or x0 � Ax0 Bx0.

Then the operator equation

AxBx = x (7)

has a positive solution x∗ in E, and the sequence {xn} of successive iterations
defined by xn+1 = Axn Bxn, n = 0, 1, . . . , converges monotonically to x∗.

Remark 11. The D-compatibility of the order relation � and the norm
‖ · ‖ in every compact chain of E holds if every partially compact subset of E
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possesses the D-compatibility property with respect to � and ‖ · ‖. This simple
fact will be utilized to prove the main results in this paper.

Remark 12. Hypothesis (a) in Theorem 10 implies that the operator
A is partially continuous and consequently both operators in the theorem are
partially continuous on E. The regularity of E in Theorem 10 may be replaced
with a stronger continuity condition on the operators A and B.

3. Existence and Approximation Result

The QHFIE (3) with delay and maxima is considered in the function space
C(J,R) of continuous real-valued functions defined on J . We define a norm
‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J

|x(t)| (8)

and
x ≤ y if and only if x(t) ≤ y(t) for all t ∈ J, (9)

respectively.
Clearly, C(J,R) is a Banach space with respect to the above supremum

norm and it is partially ordered with respect to the above partially order relation
≤. Moreover, C(J,R) is also a Banach algebra with respect to the multiplication
“ · ” defined by

(x · y)(t) = x(t) · y(t) for all t ∈ J. (10)

It is known that the partially ordered Banach algebra C(J,R) has some nice
properties concerning the D-compatibility property with respect to the norm
‖ · ‖ and the order relation ≤ in certain of its subsets. The following lemma in
this connection follows by an application of the Arzelà-Ascoli theorem.

Lemma 13. Let
(

C(J,R),≤, ‖ · ‖
)

be a partially ordered Banach space
with the norm ‖·‖ and the order relation ≤ defined by (8) and (9), respectively.
Then every partially compact subset S of C(J,R) is Janhavi, i.e., ‖ · ‖ and ≤
are D-compatible in every compact chain C in S.

Proof. This lemma is mentioned in Dhage [5, 6], but the proof appears
in Dhage [8, 9] and Dhage and Dhage [12, 13, 14]. Since the proof is easily
available, we omit the details.
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We introduce an order relation ≤C in C induced by the order relation ≤
defined in C(J,R). This will avoid the confusion of comparison between the
elements of the two Banach spaces C and C(J,R). Thus, for any x, y ∈ C,
x ≤C y implies x(θ) ≤ y(θ) for all θ ∈ I0. Note that if x, y ∈ C(J,R) and x ≤ y,
then xt ≤C yt for all t ∈ I.

We need the next definition in what follows.

Definition 14. A function u ∈ C(J,R) is said to be a lower solution of
the QHFIE (1), if it satisfies

(

u(t)

f(t, u(t), U(t))

)′

+ λ

(

u(t)

f(t, u(t), U(t))

)

≤ g(t, u(t), ut), t ∈ I,

u0 = φ ∈ C,











where U(t) = max0≤ξ≤t u(ξ). Similarly, a function v ∈ C(J,R) is said to be an
upper solution of the QHFIE (1) if it satisfies the conditions above with the
inequality reversed.

Definition 15. A function g(t, x, y) is called Carathéodory, if

(i) the map t 7→ g(t, x, y) is measurable for each x, y ∈ R, and

(ii) the map (x, y) 7→ g(t, x, y) is jointly continuous for each t ∈ J .

A Caratheódory function g is called L1-Carathéodory, if

(iii) there exists a function h ∈ L1(I,R) such that

|g(t, x, y)| ≤ h(t) a.e. t ∈ I,

for all x, y ∈ R.

The following lemma is obvious.

Lemma 16. If the function f(t, x, y) is L1-Carathéodory, then the function
t 7→ f(t, x, y) is Lebesgue integrable for each x, y ∈ R.

We will make use of the following assumptions:

(A1) f defines a continuous function f : I ×R× R → R+.
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(A2) The map x 7→
x

f(0, x, x)
is an injection on R.

(A3) The function t 7→ F (t) = f(t, 0, 0, ) is bounded on J with bound F0.

(A4) There exist constants L > 0 and K > 0 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤
Lmax{x1 − y1, x2 − y2}

K +max{x1 − y1, x2 − y2}

for all t ∈ I and x1, x2, y1, y2 ∈ R with x1 ≥ y1 and x2 ≥ y2.

(B1) g defines a function g : I × R× C → R+.

(B2) g is L1-Carathéodory.

(B3) g(t, x, y) is nondecreasing in x and y for all t ∈ I.

(C1) The QHFDE (3) has a lower solution u ∈ C(J,R).

(C2) The QHFDE (3) has a upper solution v ∈ C(J,R).

Remark 17. Note that condition (A2) holds if the mapping x→
x

f(0, x, x)
is increasing in R.

The following lemma should be clear.

Lemma 18. Assume that (B2) and (B3) hold. Then, a function x ∈
C(J,R) is a solution of the QHFDE (1) if and only if it is a solution of the
integral equation

x(t) =































[

f
(

t, x(t),X(t)
)

]

(

ce−λt

+ e−λt

∫ t

0
g(s, x(s), xs) ds

)

, if t ∈ I,

φ(t), if t ∈ I0,

(11)

where c =
φ(0)

f(0, φ(0), φ(0))
.
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Theorem 19. Assume that conditions (A1)–(A4), (B1)–(B3), and (C1)
hold and

L

(

∣

∣

∣

φ(0)

f(0, φ(0), φ(0))

∣

∣

∣
+ ‖φ‖+ ‖h‖L1

)

≤ K. (12)

If φ(0) ≥ 0, then the QHFDE (1) has a solution x∗ defined on J , and the
sequence {xn}n∈N∪{0} of successive approximations defined by

x0 = u,

xn+1(t) =































[

f
(

t, xn(t),Xn(t)
)

]

(

ce−λt

+ e−λt

∫ t

0
g(s, xn(s), x

n
s ) ds

)

, if t ∈ I,

φ(t), if t ∈ I0,

(13)

where xns = x(s+ θ), θ ∈ I0, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, in view of Lemma 13, every partially com-
pact subset S of E possesses the D-compatibility property with respect to the
norm ‖ · ‖ and the order relation ≤ so that every compact chain C in E is
Janhavi. Define two operators A and B on E by

Ax(t) =







f
(

t, xn(t),Xn(t)
)

, if t ∈ I,

1, if t ∈ I0.
(14)

and

Bx(t) =











ce−λt + e−λt

∫ t

0
eλsg(s, xn(s), x

n
s ) ds, if t ∈ I,

φ(t), if t ∈ I0.

(15)

From the continuity of the integral, it follows that A and B define the
operators A, B : E → K. Applying Lemma 18, the HFDE (11) is equivalent to
the operator equation

Ax(t)Bx(t) = x(t), t ∈ J. (16)

We wish to show that the operators A and B satisfy all the conditions of The-
orem 10. This will be shown in a series of steps.

Step I: A and B are nondecreasing on E.
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Let x, y ∈ E be such that x ≥ y. Then x(t) ≥ y(t) for all t ∈ J . Since y is
continuous on [a, t], there exists a ξ∗ ∈ [a, t] such that y(ξ∗) = max

a≤ξ≤t
y(ξ). By

the definition of ≤, we have x(ξ∗) ≥ y(ξ∗). Consequently,

X(t) = max
a≤ξ≤t

x(ξ) ≥ x(ξ∗) ≥ y(ξ∗) = max
a≤ξ≤t

y(ξ) = Y (t)

for each t ∈ J . Then, by (A2), we obtain

Ax(t) =







f
(

t, x(t),X(t)
)

, if t ∈ I,

1, if t ∈ I0,

≥







f
(

t, y(t), Y (t)
)

, if t ∈ I,

1, if t ∈ I0,

= Ay(t)

for all t ∈ J . This shows that the operator A is nondecreasing on E. Again,
if x ≥ y, then by the definition of the order relation ≤, xt ≥C yt for all t ∈ I.
Now, from (B3),

Bx(t) =











ce−λt + e−λt

∫ t

0
g(s, x(s), xs) ds, if t ∈ I,

φ(t), if t ∈ I0,

≥











ce−λt + e−λt

∫ t

0
g(s, y(s), ys) ds, if t ∈ I,

φ(t), if t ∈ I0,

= By(t)

for all t ∈ J . This shows that the operator B is also nondecreasing on E.
Step II: A is partially bounded and partially D-Lipschitz on E.
Let x ∈ E; without loss of generality, we assume that x ≥ 0. Then by (A2),

|Ax(t)| ≤ |f(t, x(t),X(t)) − f(t, 0, 0)| + |f(t, 0, 0)|

≤
Lmax{x(t) , X(t)}

K +max{x(t) , X(t)}
+ F0
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≤
Lmax{|x(t)| , |X(t)|}

K +max{|x(t)| , |X(t)|}
+ F0

≤
L‖x‖

K + ‖x‖
+ F0 ≤ L+ F0

for all t ∈ I. Similarly, if t ∈ I0, then we have |A(t)| ≤ 1. Therefore,

|A(t)| ≤ L+ F0 + 1

for all t ∈ J . Taking the supremum over t in the above inequality, we obtain

‖Ax‖ ≤ L+ F0 + 1

for all x ∈ E. Hence, A is bounded and consequently a partially bounded
operator on E.

Next, let x, y ∈ E be such that x ≥ y. Then, we have

|x(t)− y(t)| ≤ |X(t)− Y (t)|

and that
|X(t)− Y (t)| = X(t)− Y (t)

= max
t0≤ξ≤t

x(ξ)− max
t0≤ξ≤t

y(ξ) ≤ max
t0≤ξ≤t

[x(ξ)− y(ξ)]

= max
t0≤ξ≤t

|x(ξ)− y(ξ)| ≤ ‖x− y‖

for each t ∈ I. As a result, we have

|Ax(t)−Ay(t)| =
∣

∣f(t, x(t),X(t)) − f(t, y(t), Y (t))
∣

∣

≤
Lmax{|x(t)− y(t)| , |X(t) − Y (t)|}

K +max{|x(t)− y(t)| , |X(t) − Y (t)|}

≤
L‖x− y‖

K + ‖x− y‖
= ψA(‖x− y‖)

for all t ∈ J , where ψA(r) =
Lr

K + r
. Taking the supremum over t, we obtain

‖Ax−Ay‖ ≤ ψA(‖x− y‖),

for all x, y ∈ E with x ≥ y. Hence, A is a partial nonlinear D-Lipschitz
operator on E with a D-function ψA, and this further implies that A is a
partially continuous operator on E.
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Step III: B is partially continuous on E.
Let {xn}n∈N be a sequence in a chain C such that xn → x as n→ ∞. Then

xns → xs as n→ ∞. Since f is continuous, we have

lim
n→∞

Bxn(t) =











ce−λt + e−λt

∫ t

0

[

lim
n→∞

eλsg
(

s, xn(s), x
n
s

)

]

ds, t ∈ I,

φ(t), t ∈ I0,

=











ce−λt + e−λt

∫ t

0
eλsg

(

s, x(s), xs
)

ds, t ∈ I,

φ(t), t ∈ I0,

= Bx(t)

for all t ∈ J . This shows that Bxn converges to Bx pointwise on J .
To show that {Bxn}n∈N is an equicontinuous sequence of functions in E,

we need to consider three cases.
Case I: Let t1, t2 ∈ J with t1 > t2 ≥ 0. Then,

|Bxn(t2)− Bxn(t1)|

=

∣

∣

∣

∣

et2
∫ t2

0
g
(

s, xn(s), x
n
s

)

ds−et1
∫ t1

0
g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+
∣

∣

∣
ceλt2−ceλt1

∣

∣

∣

≤

∣

∣

∣

∣

et2
∫ t2

0
g
(

s, xn(s), x
n
s

)

ds− et2
∫ t1

0
g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+

∣

∣

∣

∣

et2
∫ t1

0
g
(

s, xn(s), x
n
s

)

ds−et1
∫ t1

0
g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+|c|
∣

∣

∣
eλt2−eλt1

∣

∣

∣

≤ et2
∣

∣

∣

∣

∫ t2

0
g
(

s, xn(s), x
n
s

)

ds−

∫ t1

0
g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+
∣

∣et2 − et1
∣

∣

∣

∣

∣

∣

∫ t1

0
g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+ |c|
∣

∣

∣
eλt2 − eλt1

∣

∣

∣

≤ et2
∣

∣

∣

∣

∫ t2

t1

g
(

s, xn(s), x
n
s

)

ds

∣

∣

∣

∣

+
∣

∣et2 − et1
∣

∣

∫ t1

0

∣

∣g
(

s, xn(s), x
n
s

)∣

∣ ds+ |c|
∣

∣

∣
eλt2 − eλt1

∣

∣

∣
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≤ eTMB |t2 − t1|+
(

|c|+MBT
) ∣

∣et2 − et1
∣

∣→ 0

as t2 → t1, uniformly for all n ∈ N.
Case II: Let t1, t2 ∈ J with t1 < t2 ≤ 0. Then we have

|Bxn(t2)− Bxn(t1)| = |φ(t2)− φ(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N.
Case III: Let t1, t2 ∈ J with t1 < 0 < t2. Then we have

|Bxn(t2)−Bxn(t1)| ≤ |Bxn(t2)−Bxn(0)|+|Bxn(0)−Bxn(t1)|→0

as t2 → t1.
Thus, in all above three cases, we obtain

|Bxn(t2)− Bxn(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N. This shows that the convergence Bxn → Bx is uniform
and that B is a partially continuous operator on E into itself (see Remark 2.1).

Step IV: B is a partially compact operator on E.
Let C be an arbitrary chain in E. We will show that B(C) is a uniformly

bounded and equicontinuous set in E. First, we show that B(C) is uniformly
bounded. Let y ∈ B(C); then there exists x ∈ C such that y = Bx. By (B2),

|y(t)| = |Bx(t)|

≤











|c|+ e−λt

∫ t

0
|g
(

s, x(s), xs
)

| ds, if t ∈ I,

|φ(t)|, if t ∈ I0.

≤ |c|+ ‖φ‖ + ‖h‖L1 = r

for all t ∈ J . Taking the supremum over t we obtain ‖y‖ ≤ ‖Bx‖ ≤ r for all
y ∈ B(C). Hence, B(C) is a uniformly bounded subset of E.

Next we show that B(C) is an equicontinuous set in E. Let t1, t2 ∈ J , with
t1 < t2. Then proceeding with arguments similar to those used in Step II, it
can be shown that

∣

∣y(t2)− y(t1)
∣

∣ = |Bx(t2)− Bx(t1)| → 0 as t1 → t2

uniformly for all y ∈ B(C). This shows that B(C) is an equicontinuous subset of
E. Now, B(C) is a uniformly bounded and equicontinuous subset of functions
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in E, and hence it is compact in view of Arzelà-Ascoli theorem. Consequently,
B : E → E is a partially compact operator on E into itself.

Step V: u is a lower solution of the operator equation (16).

By condition (C1), the HFDE (3) has a lower solution u defined on J . Then
we have

(

u(t)

f(t, u(t), U(t))

)′

+ λ

(

u(t)

f(t, u(t), U(t))

)

≤ g(t, u(t), ut), t ∈ I,

u0 = φ ∈ C,











where U(t) = max
0≤ξ≤t

u(ξ). Integrating the above inequality from 0 to t gives

u(t) ≤











[

f
(

t, u(t), U(t)
)

]

(

ce−λt + e−λt

∫ t

0
g(s, u(s), us) ds

)

, t ∈ I,

φ(t), t ∈ I0,

= Au(t)Bu(t)

for all t ∈ J . As a result we have u ≤ AuBu and so u is a lower solution of the
operator equation (16) defined on J .

Finally, by condition (12), we obtain

MB ψA(r) ≤

(

∣

∣

∣

φ(0)

f(0, φ(0), φ(0))

∣

∣

∣
+ ‖φ‖+ ‖h‖L1

)

·
Lr

K + r
< r

for each r > 0, and so condition (c) of Theorem 10 is satisfied.

Thus, the operators A and B satisfy all the conditions of Theorem 10 and so
the operator equation AxBx = x has a positive solution x∗. Consequently, the
integral equation (11), and a fortiori the QHFDE (3), has a positive solution x∗

defined on J . Furthermore, the sequence {xn}
∞
n=0 of successive approximations

defined by (12) converges monotonically to x∗. This completes the proof of the
theorem.

Remark 20. The conclusion of Theorems 19 also remains true if we
replace condition (C1) by (C2).

Example 21. Given two closed and bounded intervals I0 =
[

−π
2 , 0
]

and
I = [0, 1] of the real line R and an initial function φ ∈ C, consider the QHFDE
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with a delay and maxima

(

x(t)

f1(t, x(t),X(t))

)′

+ λ

(

x(t)

f1(t, x(t),X(t))

)

= g1(t, x(t), xt), t ∈ I,

x0 = φ,











(17)

where λ ∈ R, λ > 0, X(t) = max
0≤ξ≤t

x(ξ), J = [−π
2 , 1], and f1 : I×R×R → R\{0}

and g1 : I × R× C → R are continuous functions given by

φ(θ) = sin θ, θ ∈
[

−
π

2
, 0
]

,

f1(t, x, y) =







x+ y

1 + x+ y
+ 1, if x > 0, y > 0,

1, if x ≤ 0, y ≤ 0,

and

g1(t, x, y) =



























1

3

[

tanhx+ tanh(‖y‖C) + 1
]

,

if x > 0, y ≥C 0, y 6= 0,

1

3
, if x ≤ 0, y ≤C 0,

for all t ∈ I. We will show that the functions f1 and g1 satisfies all the hy-
potheses of Theorem 19. Clearly, f1 is a continuous and positive function on

[0, 1] × R × R and so (A1) is satisfied. To show that the map x →
x

f(0, x, x)
is an injection on R, let x > 0 and y > 0 be any two real numbers. Then the
expression

x

f(0, x, x)
=

y

f(0, y, y)

implies that
x

2x/(1 + 2x)
=

y

2y/(1 + 2y)
so x = y.

Similarly, if x ≤ 0 and y ≤ 0,

x

f(0, x, x)
=

y

f(0, y, y)
implies x = y.

This proves that x→
x

f(0, x, x)
is injective on R, and so (A2) is satisfied.
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We have here F (t) = f1(t, 0, 0) = 1 for all t ∈ [0, 1], and so (A3) holds. To
show (A4) holds, let (x1, y1), (x2, y2) ∈ R×R be such that x1 ≥ y1 and x2 ≥ y2.
Then, by the definition of f1,

0 ≤ f(t, x1, y1)− f(t, x2, y2)

=
1

4
·

[

x1 + x2
1 + x1 + x2

−
y1 + y2

1 + y1 + y2

]

≤
1

4
·

x1 − y1 + x2 − y2
(1 + x1 + x2)(1 + y1 + y2)

≤
1

4
·

x1 − y1 + x2 − y2
1 + x1 + x2 + y1 + y2

≤
1

4
·

x1 − y1 + x2 − y2
1 + x1 − y1 + x2 − y2

≤
1

4
·

2 max{x1 − y1 , x2 − y2}

1 + max{x1 − y1 , x2 − y2}

=
1

2
·

max{x1 − y1 , x2 − y2}

1 + max{x1 − y1 , x2 − y2}
,

and so (A4) holds with L =
1

2
and K = 1.

Now the function g1 is continuous and positive on I × R × C, and with
h(t) = 1 for all t ∈ I, x ∈ R, and y ∈ C, we see that g1 is an L1-Carathéodory
function on I × R× C. Thus, (B1) and (B2) are satisfied. Also the function

g1(t, x, y) =
1

3

[

tanhx+ tanh(‖y‖C) + 1
]

is nondecreasing in x and y for each t ∈ I, so (B3) holds. Furthermore, here
MB ≤ |c| + ‖φ‖ + ‖h‖L1 = 2. Therefore, we have

MBψA(r) ≤ 2 ·
1

2
·

r

1 + r
< r

for each r > 0. Finally, it can be shown that the function

u(t) =







1

3
te−λt, if t ∈ [0, 1],

sin t, if t ∈
[

−π
2 , 0
]

,
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is a lower solution of the QHFDE (17) defined on J . Thus, all the conditions
of Theorem 19 are satisfied. Hence, the QHFDE (17) has a positive solution x∗

and the sequence {xn} of successive approximations defined by

x0 =







1

3
te−λtt, if t ∈ [0, 1],

sin t, if t ∈
[

−π
2 , 0
]

,

xn+1(t) =































[

f1
(

t, xn(t),Xn(t)
)

]

(

ce−λt

+e−λt

∫ t

0
g1(s, xn(s), x

n
s ) ds

)

, if t ∈ [0, 1],

sin t, if t ∈
[

−π
2 , 0
]

,

where xns = x(s+ θ), θ ∈ I0, converges monotonically to x∗.

Remark 22. The conclusion obtained in Example 3.1 also remains true
if we replace the lower solution u by the upper solution v of the QHFDE (17)
given by

v(t) =

{

2 te−λt, if t ∈ [0, 1],

sin t, if t ∈
[

−π
2 , 0
]

.

Remark 23. We note that the special case of the QHFDE (3) in the form

(

x(t)

f(t, x(t))

)′

+ λ

(

x(t)

f(t, x(t))

)

= g(t, xt), t ∈ I,

x0 = φ ∈ C.











(18)

has been considered in Mule and Ahirrao [24], but the proof of their main
existence theorem is not correct, and in fact is a duplication of the proof of the
existence and approximation theorem for the FDE

(

x(t)

f(t, x(t))

)′

= g(t, xt), t ∈ I,

x0 = φ ∈ C.











(19)

given in Dhage and Dhage [14] and Dhage [11]. The QHFDE (19) has also been
studied in Dhage et. al [20] but only for existence of solutions; no information
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on the positivity or approximation of solutions is obtained. Therefore, our
main existence theorem, Theorem 19 includes the existence and approximation
theorems for the QHFDEs (18) and (19) which are also new to the literature.

In conclusion, we mention that our existence and approximation theorem,
Theorem 19 above, may be extended with appropriate modifications to the
QHFDE of neutral type

(

x(t)

f(t, x(t), xt)

)′

+ λ

(

x(t)

f(t, x(t), xt)

)

= g(t, x(t), xt), t ∈ I,

x0 = φ ∈ C,











(20)

where λ ∈ R, λ > 0, f : I ×R× C → R \ {0}, g : I ×R× C → R are continuous
functions.
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