A NEW NUMBER FIELD CONSTRUCTION OF THE D_4-LATTICE
J. Carmelo Interlando1, José Othon Dantas Lopes2,
Trajano Pires da Nóbrega Neto3 1Department of Mathematics and Statistics
San Diego State University
San Diego, CA 92182-7720, USA 2Department of Mathematics
Federal University of Ceará
Fortaleza, CE 60455-900, BRAZIL 3Department of Mathematics
São Paulo State University
São José do Rio Preto, SP 15054-000, BRAZIL
A classical problem in lattice theory is to determine whether a given lattice can be realized as -lattice, where is the ring of integers of some number field . In this work we show that the lattice can be realized as an -lattice for infinitely many totally real biquadratic fields .
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[1] E. Bayer-Fluckiger, Lattices and number fields, In: Contemp. Math., Amer. Math. Soc., Providence (1999), 69–84.
[2] J.H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd Edition, Springer Verlag, New York (1999).
[3] M. Craig, A cyclotomic construction for Leech’s lattice, Mathematika, 25 (1978), 236–241.
[4] M. Craig, Extreme forms and cyclotomy, Mathematika, 25 (1978), 44–56.
[5] A.L. Flores, J.C. Interlando, T.P. da Nóbrega Neto, and A.L. Contiero, A new number field construction of the lattice E8 , Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 54 (2013), 503–508.
[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Sixth edition, Oxford University Press, Oxford (2008).
[7] G.C. Jorge, A.J. Ferrari, and S.I.R. Costa, Rotated Dn lattices, J. Number Theory, 132 (2012), 2397–2406.
[8] A. Korkine and G. Zolotareff, Sur les formes quadratique positive quaternaires, Math. Ann., 5 (1872), 581–583.
[9] D. Marcus, Number Fields, Springer Verlag, New York (1977).
[10] M. Pischella and D. Le Ruyet, Digital Communications 2: Digital Modulations, Wiley (2015).
[11] P. Samuel, Algebraic Theory of Numbers, Hermann, Paris (1970).