A NEW NUMBER FIELD CONSTRUCTION OF THE D_4-LATTICE

Abstract

A classical problem in lattice theory is to determine whether a given lattice can be realized as $\mathfrak O_K$-lattice, where $\mathfrak O_K$ is the ring of integers of some number field $K$. In this work we show that the lattice $D_4$ can be realized as an $\mathfrak O_F$-lattice for infinitely many totally real biquadratic fields $F$.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 2
Year: 2018

DOI: 10.12732/ijam.v31i2.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] E. Bayer-Fluckiger, Lattices and number fields, In: Contemp. Math., Amer. Math. Soc., Providence (1999), 69–84.
  2. [2] J.H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd Edition, Springer Verlag, New York (1999).
  3. [3] M. Craig, A cyclotomic construction for Leech’s lattice, Mathematika, 25 (1978), 236–241.
  4. [4] M. Craig, Extreme forms and cyclotomy, Mathematika, 25 (1978), 44–56.
  5. [5] A.L. Flores, J.C. Interlando, T.P. da Nóbrega Neto, and A.L. Contiero, A new number field construction of the lattice E8 , Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry, 54 (2013), 503–508.
  6. [6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Sixth edition, Oxford University Press, Oxford (2008).
  7. [7] G.C. Jorge, A.J. Ferrari, and S.I.R. Costa, Rotated Dn lattices, J. Number Theory, 132 (2012), 2397–2406.
  8. [8] A. Korkine and G. Zolotareff, Sur les formes quadratique positive quaternaires, Math. Ann., 5 (1872), 581–583.
  9. [9] D. Marcus, Number Fields, Springer Verlag, New York (1977).
  10. [10] M. Pischella and D. Le Ruyet, Digital Communications 2: Digital Modulations, Wiley (2015).
  11. [11] P. Samuel, Algebraic Theory of Numbers, Hermann, Paris (1970).