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Abstract: In this paper we study some combinatorial properties of the ternary
Thue-Morse word, t3. More precisely, we focus on squares of letters and the
factors of t3 which separate them. We also establish that the number of return
words of a given factor of t3 is 7, 8 or 9.
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1. Introduction

The study of infinite words goes back at least to 1906 with the works of Thue
[22], [23]. The Thue-Morse word, t2, over the binary alphabet {0, 1} is the
infinite word generated by the morphism µ2 defined by µ2(0) = 01, µ2(1) =
10. This word was extensively studied [4] and some numerous combinatorial
properties are known [21, 16, 2] in the literature.

The Thue-Morse word can be naturally generalized over an alphabet Aq

of size q ≥ 3. More precisely, on the alphabet Aq = {0, 1, ..., q − 1}, it is
the infinite word tq generated by the morphism µq defined by: µq(k) = k(k +
1)...(k+ q− 1), where the letters are expressed modulo q. A study of this word
has been done in [3].

In an infinite word u, a return word of a factor v appearing at least twice
in u is a factor w such that wv is a factor of u beginning with v and containing
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exactly two occurrences of v. This notion was introduced by Durand in [9]. In
this paper return words were used as a technical tool to give a characterization
of primitive morphic words. Recently, this notion appears regularly in the
literature dedicated to infinite recurrent words [11, 15, 10]. In particular, the
return words of some classes of words are studied [16, 2, 24, 13]. In this paper,
we are interested in the combinatorial study of the Thue-Morse word t3 over the
alphabet A3 = {0, 1, 2}: description of separator of squares of letters, bispecial
biprolongable factors and return words.

After introducing the necessary notations and definitions, in Section 2 we
state some properties of t3. Section 3 is devoted to the study of separator
factors of the squares of letters in t3. Mainly, we determine the structure and
the lengths of these factors. The number of occurrences of squares of letters in
a given factor of t3 are estimated (Section 4). We end the paper with the study
of the cardinality of the set of return words of an arbitrary factor of t3 (Section
5).

2. Preliminaries

Let A be a finite alphabet. The set of finite words over A is noted A∗ and
ε represents the empty word. The set of non-empty finite words over A is
denoted by A+. For all u ∈ A∗, |u| designates the length of u and the number
of occurrences of a letter a in u is denoted |u|a. A word u of length n formed
by repeating a single letter x is denoted xn.

An infinite word is a sequence of letters of A, indexed by N. We denote by
Aω the set of infinite words on A. The set of finite or infinite words on A is
denoted A∞.

Let u ∈ A∞ and v ∈ A∗. The word v is called factor of u if there exist
u1 ∈ A∗ and u2 ∈ A∞ such that u = u1vu2. The factor v is called prefix (resp.
suffix) if u1 (resp. u2) is empty. The set of the prefixes (resp. the suffixes) of
u is denoted pref(u) (resp. suff(u)).

Let u and v be two non empty finite words. If v is a prefix (resp. a suffix)
of u the v−1u (resp. uv−1) is the word obtained from u by erasing the prefix v
(resp. the suffix v).

Let u be an infinite word. The set of factors of length n of u is denoted
Fn(u). The set of all the factors of u is denoted F(u).

Let u, v1, v2 and w be some finite words such that u = v1wv2. Then, w is
called median factor of u if |v1|= |v2|.

Let v be a factor of u and a be a letter of A. We say that v is right (resp.
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left) prolongable by a, if va (resp. av) is also a factor of u. In this case, the
word va (resp. av) is called a right (resp. left) extension of v in u; simply we
say that the letter a is a right (resp. left) extension of v. The factor v is said to
be right (resp. left) special if it admits at least two right (resp. left) extensions
in u. If v is both right special factor and left special factor, it is called bispecial
factor of u.

An infinite word u is said to be recurrent if any factor of u appears infinitely
many times in u. It is said to be uniformly recurrent if for any natural n, it
exists a natural n0 such that any factor of length n0 contains all the factors of
length n of u.

Let u be an infinite recurrent word and v, w be two factors of u such that
wv occurs in u. If v is prefix of wv and wv contains exactly two occurrences
of v then w is called return word of v in u. The set of the return words of v is
denoted Ret(v).

In order to get the sets of the return words in a recurrent word u, we need
to use its bispecial factors [2].

A morphism on A∗ is a map f : A∗ → A∗ such that f(uv) = f(u)f(v), for
all u, v ∈ A∗. A morphism σ is said to be:

• primitive if there exists a positive integer n such that, for any letter a of
A, fn(a) contains all the letters of A.

• k-uniform, if |σ(a)| = k for any letter a of A.

• left (resp. right) marked on the alphabet A = {a1, a2, ..., ad}, if the first
(resp. last) letters of f(ai) and f(aj) are different, for all i 6= j. If f is both
left marked and right marked, it is called marked morphism.

An infinite word u is generated by a morphism f if there exists a letter a
such that the words a, f(a), ..., fn(a), ... are longer and longer prefixes of u.
We note u = fω(a). An infinite word generated by a morphism is called purely
morphic word.

Let u = fω(a) be a purely morphic word and w be a factor of u verifying

|w| ≥ max{|f(a)| : a ∈ A}.

Then, w can be decomposed in the form

p0f(a1)f(a2)...f(an)sn+1,

where

• n ≥ 0, a0, a1, ..., an+1 ∈ A;

• p0 is a suffix of f(a0) and sn+1 is a prefix of f(an+1).

The word v = a1a2...an is called ancester of w.
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Consider the alphabet A = {0, 1, 2}. The ternary Thue-Morse word de-
noted t3 is the infinite word generated by the morphism µ3 defined by: µ3(0) =
012, µ3(1) = 120 and µ3(2) = 201.

Definition 1. ([4]) Let u be an infinite word on an alphabet A. One says
that u admits :

• frequencies of letters if for any letter a and for any sequence (un) of

prefixes of u such that lim
n−→+∞

|un| = +∞, then lim
n−→+∞

|un|a
|un|

exists.

• uniform frequencies of letters if for any letter a and for any sequence (vn)

of factors of u such that lim
n−→+∞

|vn| = +∞, then lim
n−→+∞

|vn|a
|vn|

exists.

Definition 2. Let u be an infinite word on an alphabet A. The word u
admits:

• frequencies of factors if for any factor v of u and for any sequence of (un)

of prefixes of u such that lim
n−→+∞

|un| = +∞, then lim
n−→+∞

|un|v
|un|

exists.

• uniform frequencies of factors if for any factor v and for any sequence (un)

of factors of u such that lim
n−→+∞

|un| = +∞, then lim
n−→+∞

|un|v
|vn|

exists.

Notation: The frequency of the non-empty factor v in u is denoted fv(u),
if it exists.

In the following, we consider the alphabet A3 = {0, 1, 2}.

In [2], the authors obtained the frequencies of the factors in the generalized
Thue-Morse word. The frequencies of the factors of length 2 of the word t3

have the form
f

3k
, k ∈ {0, 1, 2} and f = f01(t3) =

3

13
. So, f00(t3) =

1

39
and

f10(t3) =
1

13
.

Let u = u1u2...un ∈ A∗. We call mirror of u the word denoted u and defined
by un...u2u1.

The (0, 2)-complement of u, denoted ũ is the word defined by ũ = (2 −
u1)(2 − u2)...(2 − un).

For all u ∈ A∗ we have ũ = ũ. So, we set û = ũ.

The operation .̂ is involutive: ̂̂u = u for all u ∈ A∗.

Proposition 1. Consider the sequences of words (un), (vn) and (wn)
defined by u0 = 0, v0 = 1, w0 = 2 and for all natural n, un+1 = unvnwn,
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vn+1 = vnwnun and wn+1 = wnunvn. Let w ∈ F(t3). Then

1. For all n ≥ 0 we have: un = µn
3 (0), vn = µn

3 (1), wn = µn
3 (2).

2. The sequences (un), (vn) and (wn) verify:

• û3n = w3n, v̂3n = v3n and ŵ3n = u3n;

• û3n+1 = u3n+1, v̂3n+1 = w3n+1 and ŵ3n+1 = v3n+1;

• û3n+2 = v3n+2, v̂3n+2 = u3n+2 and ŵ3n+2 = w3n+2.

Proof. We process by induction on n.

1. The formulae are verified for n = 0 since, by definition, we have u0 = 0 =
µ0
3(0), v0 = 1 = µ0

3(1) and w0 = 2 = µ0
3(2).

Assume that for all n ≥ 1, un = µn
3 (0), vn = µn

3 (1) and wn = µn
3 (2).

Then, we have:

un+1 = unvnwn = µn
3 (0)µ

n
3 (1)µ

n
3 (2) = µn

3 (012) = µn+1
3 (0);

vn+1 = vnwnun = µn
3 (1)µ

n
3 (2)µ

n
3 (0) = µn

3 (120) = µn+1
3 (1);

wn+1 = wnunvn = µn
3 (2)µ

n
3 (0)µ

n
3 (1) = µn

3 (201) = µn+1
3 (2).

2. The relations are verified for n = 0. Assume that for n ≥ 1 we have




û3n = w3n, v̂3n = v3n
û3n+1 = u3n+1, v̂3n+1 = w3n+1

û3n+2 = v3n+2, ŵ3n+2 = w3n+2

.

Then

•

{
û3(n+1) = ŵ3n+2v̂3n+2û3n+2 = w3n+2u3n+2v3n+2 = w3(n+1)

v̂3(n+1) = û3n+2ŵ3n+2v̂3n+2 = v3n+2w3n+2u3n+2 = v3(n+1)
.

Similarly we check that:

• û3(n+1)+1 = u3(n+1)+1, v̂3(n+1)+1 = w3(n+1)+1;

• û3(n+1)+2 = u3(n+1)+2, v̂3(n+1)+2 = w3(n+1)+2.

The exchange morphism on A3 is the morphism E defined by: E(0) = 1,
E(1) = 2, E(2) = 0.

Proposition 2. 1. For all n we have: E (Fn(t3)) = Fn(t3).
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2. For all a ∈ A3, the word aaa does not occur in t3.

3. The words 0120120, 1201201 and 2012012 do not occur in t3.

Proof. 1. Let w ∈ Fn(t3). Then, |E(w)| and w have the same length
because E just exchange the letter in w. Furthermore, there exists n0

such that w occurs in un0
= µn0

3 (0). So, E(w) occurs in E(µn0

3 (0)).
Moreover, we have µ3E = Eµ3. Thus, E(w) occurs in µn0

3 (1)) = vn0
.

Therefore, E(w) ∈ Fn(t3) since vn0
∈ F(t3). So, E (Fn(t3)) ⊂ Fn(t3).

As E is bijective it results E (Fn(t3)) = Fn(t3).

2. It suffices to observe that any square of letters begins (resp. ends) with
the last (resp. first) letter of the image of some letter. As no image of
letter begins or ends by a square of letters, then t3 can not contain a cube.

3. This assertion follows from 2.

3. Squares of Letters and Separator Factors

In this section the structure of the factors which separate the squares of letters
in t3 are studied.

We call separator factor, a factor which separates two consecutive squares
of letters in t3.

Proposition 3. Let w be a separator factor. Then |w| ∈ {7, 16}.

Proof. From a given square of letters we construct w by using µ3 until the
next square of letters. As we have E(F (t3)) = F (t3) it is enough to handle the
case of one of the squares of letters. So, consider the square 11 to continue.

Let w1, w2 and u be some factors of t3 such that v = w111w2. Observe
that 11 is due to µ3(21). We can write v = w′

1µ3(21)w
′
2, where w′

1 (resp.
w′
2) is a prefix (resp. suffix) of w1 (resp. w2). As the factor 21 begins (resp.

ends) by the last (resp. the first) letter of the image of 0 (resp. 1), then it
admits a unique left (resp. right) extension. So, v = w′′

1µ3(012120)w
′ ′
2, where

w′′
1 (resp. w′′

2) is a prefix (resp. suffix) of w′
1 (resp. w′

2). For further, take
v1 = w′′

1µ3(012), v2 = µ3(120)w
′ ′
2 and use v2.

Moreover, 120 is right triprolongable. Thus, 120012, 120120 and 120201
are factors of t3. As a consequence, v2 takes one of the following forms:
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µ3(120012)u1 , µ3(120120)u2 or µ3(120201)u3 , where ui is a suffix of w′′, for all
i ∈ {1, 2, 3}. In others terms, v2 is equal 120201012012120210u1 , 120201012120
201012u2 or 1202010122010− 12120u3.

For v2 = 120201012201012120u3 , it appears that the square which follows
11 is 22 and the factor which separates them is of length 7.

For v2 = 120201012012120210u1 , we have v2 = µ3(µ3(10))u1. Moreover, 1 is
the unique right extension of 10. So, 1012 is in t3. Thus, v2 = µ3(µ3(1012))u

′
1,

where u′1 is a suffix of u1. We get:

v2 = 120201012012120201120201012201012120u′1 .

For v2 = 120201012012120210u1 , we proceed in a similar way as to the
previous case and we get v2 = µ3(µ3(1120))u

′
2 , where u

′
2 is a suffix of u2. Thus,

we have:
v2 = 120201012120201012201012120012120201.

After all, the length of a separator of squares of letters is either 7 or 16.

Observe that the squares which follow the 11 are 11 or 22.

Corollary 4. Let w be a separator factor. We have the following proper-
ties.

1. If w separates ii and jj then i = j or j = E(i).

2. The set of separators of length 7 is:

S(7) = {i−1µ2
3(i)j

−1 : i ∈ A3, j = E(i)}.

3. If |w| = 16 then we can have iiwii or iiwjj in t3, i 6= j.

(a) The separators which separate identical squares of letters are given
by the set:

Si−i(16) = {i−1µ2
3(ij)i

−1 : i ∈ A3, j = E2(i)}.

Every separator in this set admits a median factor which is image of
square of some letters.

(b) The separators which separate non identical squares are given by the
set:

Si−j(16) = {i−1µ2
3(ii)j

−1 : i ∈ A3, j = E(i)}.
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Proof. 1. Recall that in t3, after 11 the next square of letters is 11 or
22. Let w1 (resp. w2) be a separator factor of 11 with 11 (resp. 22).
Then, consider the factors u = 11w111 and v = 11w222 of t3. From
Lemma 2, it follows that E(u) = 22E(w1)22 (resp. E(v) = 22E(w2)00)
and E2(u) = 00E2(w1) 00 (resp. E2(v) = 00E2(w2)11) are in t3. Thus,
we get the separator factors of 22 (resp. 00).

2. The separator factor of length 7 preceded by 11 is w = 2020101 (see the
proof of Proposition 3). If we consider the image of w by E (resp. E2)
we get the separator factor of length 7 preceded by 22 (resp. 00). As w
separates the squares 11 and 22, then E(w) (resp. E2(u)) separates the
squares 22 and 00 (resp. 00 and 11).

3. Let w be a separator factor of length 16. Consider the case where w is
preceded by 11. The two other cases coincide with E(w) and E2(w). We
have that follows.

• w = 2020101201212020 = 1−1µ2
3(10)1

−1 if w is followed by 11. More-
over, the image of 00 is a median factor of w.

• w = 2020101212020101 = 1−1µ2
3(11)2

−1 if w is followed by 22.

Observe that no separator factor of length 7 separates two identical squares
of letters.

Corollary 5. Every factor of t3 of length 19 contains at least one square
of letters and at most two. This length is minimal.

Proof. Let w be a factor of t3 of length 19. Then w synchronizes in a unique
way of the form iµ3(u), µ3(u)j or ijµ3(u)kl with i, j, k, l ∈ A3. We have two
cases to discuss.

Case 1: The factor w is of the form iµ3(u). Then, the factor u verifies
|u| = 6. So, w can be written in the form µ3(ij), jkµ3(i)l or jµ3(i)kl, where
i, j, k, l ∈ A3. Consider the different forms of u.

• If u = µ3(ij), then ij belongs to {00, 01, 02, 10, 11, 12, 20, 21,
22}. Without lost of generality, let us see the case where i = 0. Observe that
00 (resp. 02) begins with the last letter of the image of some letter. So, 2 is the
unique left extension of 00 and 02. Moreover, 01 is left triprolongable. After
taking all the left extensions of 00, 02 and 01 in t3, w takes one of the follow-
ing values: 0012120201012120201, 0012120201201012120 or i01212020112020−
1012, i ∈ A3.
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• The factor u is of the form jkµ3(i)l. Consider the case where i = 0.
Then, we have u = jk012l. Moreover, 012 is both left triprolongable and
right triprolongable. As a consequence, jk browses all the values of the set
{01, 12, 20, }. If jk = 12 (resp. 20), then l = 1, since neither 000 nor 002
(resp. neither 102 nor 100) is in t3. Thus, the factor u takes one of the
following forms 010120, 010121, 010122, 120121, 200121. By applying µ3 to each
of these factors after extension on the left, we get the following values for w:
2120201012120201120, 0201012012120201120, 10121200121− 20201µ3(l), l ∈
A3.

We proceed in a similar way as in the case where u = jµ3(i)kl.
Case 2: The factor w is of the form ijµ3(u)kl. Then, |u| = 5 and u can

be synchronized in the form i′j′µ3(k
′), µ3(k

′)i′j′ or i′µ3(k
′)j′. Without lost of

generality, let us take k′ = 0.
– Suppose that u = i′j′µ3(0). As 0 is left triprolongable, then i′j′ browses

all the set {01, 12, 20}.

• If i′j′ = 01 then 2u = 201012 = µ3(20). As the factor 20 is left tripro-
longable, then w = i201012120012120201, i ∈ {0, 1, 2}.

• If i′j′ = 12, then 0u = 012012 = µ3(00). Moreover, the letter 2 is the
unique left extension of 00 in t3. So, w = 0012120201012120201.

• If i′j′ = 20, then 1u = 120012 = µ3(10). Moreover, in t3, 0 is the unique
left extension of 10. So, w = 1120201012012120201.

– Suppose that u = i′µ3(0)j
′. In a similar way as in the case 1, we verify that

w takes one of the following forms: 010120121202011- 2020, 12120012120201120
20, 2020101212020112020, 121200121202- 0120101, 1212001212020101212.

Observe to finish that 120201012012120201 = µ2
3(10) is a factor of length

18 of t3 without square of letters.

Proposition 6. Let w be a separator factor of length 16. Then, w is
preceded (resp. followed) by a separator factor of length 7.

Proof. Let w be a separator factor of length 16 preceded by 11. Then, w
takes one of the following forms:

1−1µ2
3(10)1

−1, 1−1µ2
3(11)2

−1.

Note that 10 (resp. 11) admits a unique left extension and a unique right
extension. Thus, 0101 and 0112 occur in t3. By applying µ2

3 to these two
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factors, we verify that w is preceded (resp. followed) by 0−1µ2
3(0)1

−1 (resp.
2−1µ2

3(2)0
−1 or 1−1µ2

3(0)2
−1). From Corollary 4 these factors are separator

factors of length 7.
One proceeds similarly if we take w preceded by 00 or 22.

Proposition 7. Let w1 and w2 be two separator factors of length 16. Con-
sider u a factor separating w1 and w2 such that u does not contain a separator
factor of length 16. Then, |u| ∈ {11, 38}.

Proof. Let u be a factor of t3 separating two separator factors w1 and w2

of length 16. By Proposition 6, the minimal length of u is 11.
First, show that the length of u is not between 11 and 38.
Suppose that u contains two separator factors of length 7. Then, |u| =

20 and u has the form iiu1jju2kk, where j = E(i), k = E2(i). Even if it
means changing the roles of letters, we take i = 0. As a consequence, u =
00u111u222 = 0µ2

3(01)2. Thus, one of the factors 00w1uw200, 00w1uw222,
22w1uw200 and 22w1uw222 is in t3 (Corollary 5). These factors can be written
respectively as follows:

0µ2
3(020122)0, 0µ2

3(020121)2, 2µ2
3(220122)0, 2µ

2
3(220121).

But, the words 020122, 020121, 220122 and 2202121 do not occur in t3, since
02 and 22 (resp. 21 and 22) are not suffixes (resp. prefixes) of images of letters.
So, u cannot have the form iiu1jju2kk.

Suppose that u contains three separator factors of length 7. Then, |u| =
29 and u has the form iiu1jju2kku3ii, where j = E(i) and k = E2(i). As
previously, we end in a contradiction.

Now, show that the length of u cannot be superior to 38.
Suppose that the length of u is 47, the next possible value after the length

38. Then, u is of the form iiu1jju2kku3iiu4jju5kk. Even if it means changing
the roles of the letters, take i = 0. We have u = 00u111u222u300u411u522
or u = 0µ2

3(01201)2. If w1 is preceded by 00 (resp. 22), then 0µ2
3(0201201)

(resp. 2µ2
3(2201201)) occurs in t3. This is impossible, because the word 0201201

(resp. 2201201) does not occur in t3. Similarly, we show that u cannot take
the following possible length, 56.

Suppose that |u| > 56. Then, one verifies that u contains the factor
µ3(012)µ3(012)µ3(012) = µ3(012012012). This is impossible by Proposition
6.

If the length of u is 38 and u begins by the square 00, then we have

u = 00121202011202010122010121200121202011 = 0µ2
3(0120)1.
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Moreover, 0120 is left (resp. right) prolongable by 2 (resp. 1). Consequently,
0µ2

3(0120)1 occurs in t3. Similarly, we show that u occurs in t3 if u begins with
the square 11 or 22.

After all, |u| ∈ {11, 38}.

4. Estimation of the Numbers of Squares of

Letters in the Factors of t3

In this section, we estimate the number of squares of letters in a given factor
of t3.

Consider the set G = {iµ3
3(i)µ

2
3(i)j : i ∈ A3, j = E(i)}. Observe that any

element of G is in t3. Moreover, from Proposition 7 these elements does not
overlap.

Notation: Let a, b ∈ A3, a 6= b. We denote Rab the application defined
from F (t3) to A∗

3 which consisting to replace in each occurrence of element of
G the 3rd square of letters by ab.

Proposition 8. Let w be a factor of t3 of length n beginning with a
square of letters. Let α be the number of occurrences of the elements of G in
w. If n is multiple of 27, then

|w|00 + |w|11 + |w|22 =
2n

27
+ α.

Proof. Let w be a factor of length n of t3, beginning with a square of letters.
Recall that the elements of G are the longest factors of t3, which contain only
separator factors of length 7. As a consequence, if |w| is multiple of 27, then
there exists a natural k such that:

Rab(w) = (iiXjjY )k, where X and Y are separator factors. Thus,

|Rab(w)|00 + |Rab(w)|11 + |Rab(w)|22 =
2n

27
.

The result is obtained by adding α to the previous equality.

Theorem 9. Let w be a factor of t3 of length n. Then, there exist some
naturals N and β verifying N ≤ n and β ∈ {0, 1, 2, 3} such that

|w|00 + |w|11 + |w|22 =
2N

27
+ α+ β,
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where α = # {|w|z : z ∈ G}.

Proof. For n large enough, decompose w in the form w = w1uw2, where
w1 is the prefix of w preceding the first square of letters, u the factor of w
beginning with the first square of letters such that |u| ≡ 0[27] and w2 the
suffix of w verifying |w2| < 27. Let us set N = |u| = n − (|w1| + |w2|). From
Proposition 8 we have |u|00 + |u|11 + |u|22 = 2N

27 + α.
Determine now the number of possible squares of letters in w2. We have

two cases to discuss: w2 ∈ G or w2 /∈ G.
If w2 ∈ G then we have:

|w2|00 + |w2|11 + |w2|22 =





1 if 2 ≤ |w2| ≤ 10
2 if 11 ≤ |w2| ≤ 19
3 if 20 ≤ |w2|

.

If w2 /∈ G, then w2 contains at most two squares of letters. Let us set β the
number of squares of letters in w2. So, it follows:

|w|00 + |w|11 + |w|22 =
2N

27
+ α+ β.

Proposition 10. Each element of G comes from the image of a square of
letters by µ3

3.

Proof. Let w ∈ G. Suppose that w begins with the square 11. Then, w is
of the form 1µ3

3(1)µ
2
3(1)2 = 1µ2

3(1201)2. Moreover, the factor 1201 is bispecial
biprolongable. As a consequence, the factors 012012, 012010 and 212012 are in
t3. Observe that among these factors, only the image of 012012 by µ2

3 contains
w and we have:

µ2
3(012012) = µ3

3(00) = 01212020w01012120.

We proceed similarly when we suppose that w begins with the square 00 or
22.

Consequently, for all w ∈ G, no element of G occurs in µ3(w) or µ
2
3(w) since

the squares of letters are the only squares of factors of t3 occurring in w.

Proposition 11. The longest factors of t3 which contain squares of letters
and do not contain images by µ3 of squares of letters are factors of the form
u1wu2, where w ∈ G, and |u1| = |u2| = 10.
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Proof. By Corollary 4, note that every separator factor of a same square
of letters is centered on the image by µ3 of a square of letters. Now, among
the separator factors of squares of letters only those of length 7 do not contain
some square of factors. Furthermore, the elements of G are the longest factors
of t3 which do not contain separator factors of length 16. Thus, we just have
to determine for all w in G, the longest left (resp. right) extension which does
not contain image of square of letters by µ3. Suppose that w comes from the
image of 00 and put u = µ3

3(00). We have

u = µ3
3(00) = 01212020w01012120.

Moreover, the letter 2 (resp. 1) is the unique left (resp. right) extension of
00. From the image of 2001 by µ3

3 one observes that the first square 11 (resp.
the last square 22) of w is preceded by 11 (resp. 22). As a result, the factor
01212020 (resp. 01012120) is left (resp. right) prolongable by 012 (resp. 120).
Therefore, u1 (resp. u2) contains the image of a square of letters if |u1| ≥ 11
(resp. |u2| ≥ 11).

We proceed in a same way when w comes from the image of 11 (resp.
22).

Proposition 12. Let w be a factor of t3 of length n and α be the number

of occurrences of elements of G in w. Then
α

n
tends to

1

351
when n tends to

∞.

Proof. By Theorem 9, we have

|w|00 + |w|11 + |w|22 =
2N

27
+ α+ β.

Since t3 admits frequencies of factors [3], then it follows

f00(t3) + f11(t3) + f22(t3) =
2

27
+ δ,

where δ = lim
n−→∞

α

n
. Moreover, f00(t3) = f11(t3) = f22(t3) =

1

39
. Thus,

1

13
=

2

27
+ δ.
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5. Bispecial Biprolongable Factors and Return Words in t3

The bispecial triprolongable factors of t3 have been studied in [14]. In this
section, we establish some properties of the bispecial biprolongable factors of
t3. Then, we determine the cardinality of the set of return words of a given
factor in t3.

For the further, BSB(t3) (resp. BST (t3)) will denote the set of the bispe-
cial biprolongable (resp. triprolongable) factors of t3.

The following theorem and proposition are obtained in [14]:

Theorem 13. The set BST (t3) is given by:

BST (t3) =
⋃

n≥0

{µn
3 (0), µ

n
3 (1), µ

n
3 (2), µ

n
3 (01), µ

n
3 (12), µ

n
3 (20)} ∪ {ε}.

Proposition 14. Let u be an element of BST (t3) such that |u| ≥ 3.
Then, there exists u′ in BST (t3) such that u = µ3(u

′).

Proposition 15. Let w be a factor of t3. Then, w is right (resp. left)
biprolongable if and only if µ3(w) is right (resp. left) biprolongable.

Proof. Let w be a right biprolongable factor of t3. Without lost of gener-
ality, suppose that w0 and w1 are in t3. Then, µ3(w)0 and µ3(w)1 are in t3,
since µ3(i) begins with i for all i ∈ A3. Conversely, let w be a factor of t3
such that µ3(w) is right biprolongable. Then, we have |w| ≥ 2. Thus, |µ3(w)0|,
|µ3(w)1| ≥ 7 and each of them admits a unique synchronization. Even if it
means exchanging the roles of the letters, suppose that µ3(w)0 and µ3(w)1 are
in t3. As 0 and 1 are the first letters of their images respectively then the words
µ3(w)012 and µ3(w)120 are in t3. These two factors can be written respectively
µ3(w0) and µ3(w1) in a unique way. So, w is right biprolongable in t3. We
proceed in a same way for the left biprolongable factors.

Thus, every factor w of t3 is bispecial biprolongable if µ3(w) is bispecial
biprolongable and conversely.

Proposition 16. Let w ∈ BSB(t3) such that |w| ≥ 7. Then, there exists
a unique word v in BSB(t3) such that w = µ3(v).

Proof. Let w ∈ BSB(t3) verifying |w| ≥ 7. Then, w admits a unique
decomposition in the form δ1µ3(v)δ2. As w is bispecial biprolongable, then w
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begins (rep. ends) with the image of a letter. So, δ1, δ2 = ε. Therefore, by
Proposition 16, we have w = µ3(v) and v ∈ BSB(t3).

Theorem 17. The set BSB(t3) is given by:

BSB(t3) =
⋃

n≥0

{µn+1
3 (i)µn

3 (i) : i ∈ A3}.

Proof. By Proposition 16, we have just to find the elements of BSB(t3)
with length at most 7, since the others are obtained by applying successively
µ3 on these elements. These factors are i(i+ 1)(i + 2)i = µ3(i)i, i ∈ A3

Lemma 18. ([2]) Let u be an infinite word generated by a morphism φ
and w be a factor of u. If w is the only ancester of φ(w) then Ret(φ(w)) =
φ(Ret(w)).

Theorem 19. Every factor of t3 admits 7, 8 or 9 return words.

Proof. As t3 is uniformly recurrent and non eventually periodic, to describe
the cardinality and the structure of Ret(w) for arbitrary factor w it suffices to
consider bispecial factors w (see Section 3.1 in [2]). So, by Proposition 14,
Proposition 16 and Lemma 18, it is sufficient to consider the initial elements
i, ij of BST (t3) and µ3(i)i of BSB(t3), where i ∈ A3 and j = E(i). By
Proposition 2 we can restrict to the cases 0, 01 in BST (t3) and µ3(0)0 in
BSB(t3).

• Determine Ret(0). As 0 occurs in µ3(i), i ∈ A3, the return words of 0 are
due to µ3(ij) for all i, j ∈ A3. Thus, we have

Ret(0) = {0, 01, 02, 012, 0112, 0122, 01212}.

• Determine Ret(01). Observe that 01 occurs in µ3(0), µ3(2) and µ3(11).
So, the return words of 01 are due to µ3(00), µ3(02), µ3(22), µ3(20),
µ3(010), µ3(011), µ3(012), µ3(112) and µ3(212). Thus, the return words
of 01 are 01, 012, 0122, 01212, 01202, 011202, 012120 and 0121202.

• Determine Ret(0120). Observe that 0120 occurs in µ3(ii), i ∈ A3. So,
the return words of 0120 are due to µ3(iiwjj), where i, j ∈ A3 and w is
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separator. Thus, by Corollary 4, the set of return words of 0120 is:

{µ3

(
0µ2

3 (0)
)
0−1, (12)−1µ3

(
1µ2

3 (1)
)
(01)−1,

2−1µ3

(
2µ2

3 (2)
)
(012)−1, µ3

(
0µ2

3 (02)
)
(012)−1,

(12)−1µ3

(
1µ2

3 (10)
)
0−1, 2−1µ3

(
2µ2

3 (21)
)
(01)−1,

µ3

(
0µ2

3 (00)
)
0−1, (12)−1µ3

(
1µ2

3 (11)
)
(01)−1,

and 2−1µ3

(
2µ2

3 (22)
)
(012)−1}.
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