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Abstract: First, we prove that the Dunkl-type maximal operator Mα is
bounded on the generalized Dunkl-type Morrey spaces Mp,ω,α for 1 < p < ∞
and from the spaces M1,ω,α to the weak spaces WM1,ω,α.

We prove that the Dunkl-type fractional order integral operator Iβ,α, 0 <
β < 2α+ 2 is bounded from the generalized Dunkl-type Morrey spaces Mp,ω,α

to Mq,ωp/q,α, where β/(2α + 2) = 1/p − 1/q, 1 < p < (2α+ 2)/β.
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1. Introduction

The Hardy–Littlewood maximal function, fractional maximal function and frac-
tional integrals are important technical tools in harmonic analysis, theory of
functions and partial differential equations. On the real line, the Dunkl oper-
ators are differential-difference operators associated with the reflection group
Z2 on R. In the works [1, 17, 24, 35] the maximal operator associated with
the Dunkl operator on R were studied. In this work, we study the fractional
maximal function (Dunkl-type fractional maximal function) and the fractional
integral (Dunkl-type fractional integral) associated with the Dunkl operator on
R. We obtain the necessary and sufficient conditions for the boundedness of the
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Dunkl-type fractional maximal operator, and the Dunkl-type fractional integral
operator from the spaces Mp,ω,α(R) to the spaces Mq,ω,α(R), 1 < p < q < ∞,
and from the spaces M1,ω,α(R) to the weak spaces WMq,ω,α(R), 1 < q <∞.

For x ∈ Rn and r > 0, let B(x, r) denote the open ball centered at x of
radius r.

Let f ∈ Lloc
1 (Rn). The maximal operator M and the Riesz potential Iβ are

defined by

Mf(x) = sup
t>0

|B(x, t)|−1

∫

B(x,t)
|f(y)|dy,

Iβf(x) =

∫

Rn

f(y)dy

|x− y|n−β
, 0 < β < n,

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).

The operators M and Iβ play an important role in real and harmonic anal-
ysis (see, for example [36] and [32]).

In the theory of partial differential equations, the Morrey spaces Mp,λ(R
n)

play an important role. They were introduced by C. Morrey in 1938 [28] and
defined as follows:

For 0 ≤ λ ≤ n, 1 ≤ p <∞, f ∈ Mp,λ(R
n) if f ∈ Lloc

p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r
−λ

p ‖f‖Lp(B(x,r)) <∞.

If λ = 0, then Mp,λ(R
n) = Lp(R

n), if λ = n, then Mp,λ(R
n) = L∞(Rn),

if λ < 0 or λ > n, then Mp,λ(R
n) = Θ, where Θ is the set of all functions

equivalent to 0 on Rn.

These spaces appeared to be quite useful in the study of the local behaviour
of the solutions to elliptic partial differential equations, apriori estimates and
other topics in the theory of partial differential equations.

Also by WMp,λ(R
n) we denote the weak Morrey space of all functions

f ∈WLloc
p (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp(R
n) denotes the weak Lp-space.

F. Chiarenza and M. Frasca [8] studied the boundedness of the maximal
operator M in the Morrey spaces Mp,λ. Their results can be summarized as
follows:

Theorem A. Let 0 < α < n and 0 ≤ λ < n, 1 ≤ p <∞.

1) If 1 < p <∞, then M is bounded from Mp,λ to Mp,λ.
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2) If p = 1, then M is bounded from M1,λ to WM1,λ.

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < q <
∞, then Iβ is bounded from Lp(R

n) to Lq(R
n) if and only if β = n

p − n
q , and

for p = 1 < q < ∞, Iβ is bounded from L1(R
n) to WLq(R

n) if and only if
β = n − n

q . D.R. Adams [4] studied the boundedness of the Riesz potential in
Morrey spaces and proved the follows statement (see, also [6]).

Theorem B. Let 0 < β < n and 0 ≤ λ < n, 1 ≤ p < n−λ
β .

1) If 1 < p < n−λ
β , then condition 1

p − 1
q = β

n−λ is necessary and sufficient

for the boundedness Iβ from Mp,λ(R
n) to Mq,λ(R

n).

2) If p = 1, then condition 1 − 1
q = β

n−λ is necessary and sufficient for the

boundedness Iβ from M1,λ(R
n) to WMq,λ(R

n).

If β =
n

p
− n

q
, then λ = 0 and the statement of Theorem B reduces to the

above mentioned result by Hardy-Littlewood-Sobolev.

2. Definitions, notation and preliminaries

Let α > −1/2 be a fixed number and µα be the weighted Lebesgue measure on
R, given by

dµα(x) :=
(

2α+1Γ(α+ 1)
)−1 |x|2α+1 dx.

For every 1 ≤ p ≤ ∞, we denote by Lp,α(R) = Lp(R, dµα) the spaces of
complex-valued functions f , measurable on R such that

‖f‖p,α ≡ ‖f‖Lp,α
=

(
∫

R
|f(x)|p dµα(x)

)1/p

<∞ if p ∈ [1,∞),

and

‖f‖∞,α ≡ ‖f‖L∞
= ess sup

x∈R
|f(x)| if p = ∞.

For 1 ≤ p < ∞ we denote by WLp,α(R), the weak Lp,α(R) spaces defined
as the set of locally integrable functions f with the finite norm

‖f‖WLp,α
= sup

r>0
r (µα {x ∈ R : |f(x)| > r})1/p .

Note that

Lp,α ⊂WLp,α and ‖f‖WLp,α
≤ ‖f‖p,α for all f ∈ Lp,α(R).
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Let B(x, t) = {y ∈ R : |y| ∈ ]max{0, |x| − t}, |x| + t[ } and Bt ≡ B(0, t) =
]− t, t[, t > 0. Then

µαBt = bα t
2α+2,

where bα =
[

2α+1 (α+ 1)Γ(α+ 1)
]−1

.

We denote by BMOα(R) (Dunkl-type BMO space) the set of locally inte-
grable functions f with finite norm (see [14])

‖f‖∗,α = sup
r>0, x∈R

1

µαBr

∫

Br

|τxf(y)− fBr(x)| dµα(y) <∞,

where

fBr(x) =
1

µαBr

∫

Br

τxf(y) dµα(y).

For all x, y, z ∈ R, we put

Wα(x, y, z) = (1− σx,y,z + σz,x,y + σz,y,x)∆α(x, y, z)

where

σx,y,z =

{

x2+y2−z2

2xy if x, y ∈ R \ {0},
0 otherwise

and ∆α is the Bessel kernel given by

∆α(x, y, z) =

{

dα
([(|x|+|y|)2−z2][z2−(|x|−|y|)2])α−1/2

|xyz|2α
, if |z| ∈ Ax,y,

0, otherwise,

where dα = (Γ(α+ 1))2/(2α−1√π Γ(α+ 1
2)) and Ax,y = [||x| − |y||, |x| + |y|].

Properties 1. (see Rösler [37]) The signed kernel Wα is even with respect
to all variables and satisfies the following properties

Wα(x, y, z) =Wα(y, x, z) =Wα(−x, z, y),

Wα(x, y, z) =Wα(−z, y,−x) =Wα(−x,−y,−z)
and

∫

R
|Wα(x, y, z)| dµα(z) ≤ 4.

In the sequel, we consider the signed measure νx,y, on R, given by

νx,y =







Wα(x, y, z) dµα(z) if x, y ∈ R \ {0},
dδx(z) if y = 0,
dδy(z) if x = 0.



ON THE BOUNDEDNESS OF DUNKL-TYPE FRACTIONAL... 215

Definition 1. For x, y ∈ R and f a continuous function on R, we put

τxf(y) =

∫

R
f(z) dνx,y(z).

The operator τx, x ∈ R, is called Dunkl translation operator on R and it
can be expressed in the following form (see [37])

τxf(y) = cα

∫ π

0
fe ((x, y)θ) h1(x, y, θ)(sin θ)

2α dθ

+cα

∫ π

0
fo ((x, y)θ) h2(x, y, θ)(sin θ)

2α dθ,

where (x, y)θ =
√

x2 + y2 − 2|xy| cos θ, f = fe+fo, fo and fe being respectively
the odd and the even parts of f , with

cα ≡
(∫ π

0
(sin θ)2α dθ

)−1

=
Γ(α+ 1)√
π Γ(α+ 1/2)

,

h1(x, y, θ) = 1− sgn(xy) cos θ

and

h2(x, y, θ) =







(x+ y) [1− sgn(xy) cos θ]

(x, y)θ
, if xy 6= 0,

0, if xy = 0.

By the change of variable z = (x, y)θ, we have also (see [3])

τxf(y) = cα

∫ π

0
{f ((x, y)θ) + f (−(x, y)θ)

+
x+ y

(x, y)θ
[f ((x, y)θ)− f (−(x, y)θ)]

}

(1− cos θ)(sin θ)2α dθ.

Now we define the Dunkl-type fractional maximal function by

Mβ,αf(x) = sup
r>0

(

µαBr

)
β

2α+2
−1
∫

Br

τx|f |(y) dµα(y), 0 ≤ β < 2α+ 2,

and the Dunkl-type fractional integral by

Iβ,αf(x) =

∫

R
τx|y|β−2α−2f(y) dµα(y), 0 < β < 2α+ 2.

If β = 0, then Mα ≡ M0,α is the Hardy-Littlewood maximal operator
associated with the Dunkl operator (see [1, 17, 24, 35]).



216 Y.Y. Mammadov, S.A. Hasanli

Theorem 2. ([1, 24, 35])

1) If f ∈ L1,α(R), then for every s > 0

µα {x ∈ R :Mαf(x) > s} ≤ C1

s

∫

R
|f(x)| dµα(x),

where C1 > 0 is independent of f .

2) If f ∈ Lp,α(R), 1 < p ≤ ∞, then Mαf ∈ Lp,α(R) and

‖Mαf‖p,α ≤ C2‖f‖p,α,
where C2 > 0 is independent of f .

Corollary 3. If f ∈ Lloc
1,α(R), then

lim
r→0

1

µαBr

∫

Br

∣

∣τxf(y)− f(x)
∣

∣ dµα(y) = 0

for a.e. x ∈ R.

Corollary 4. If f ∈ Lloc
1,α(R), then

lim
r→0

1

µαBr

∫

Br

τxf(y)dµα(y) = f(x)

for a.e. x ∈ R.

The following theorem is our main result in which we obtain the necessary
and sufficient conditions for the Dunkl-type fractional maximal operator Mβ,α

to be bounded from the spaces Lp,α(R) to Lq,α(R), 1 < p < q < ∞ and from
the spaces L1,α(R) to the weak spaces WLq,α(R), 1 < q <∞.

Theorem 5. ([18]) Let 0 < β < 2α+ 2 and 1 ≤ p ≤ 2α+2
β .

1) If 1 < p < 2α+2
β , then the condition 1

p − 1
q = β

2α+2 is necessary and
sufficient for the boundedness of Mβ,α from Lp,α(R) to Lq,α(R).

2) If p = 1, then the condition 1− 1
q = β

2α+2 is necessary and sufficient for
the boundedness of Mβ,α from L1,α(R) to WLq,α(R).

3) If p = 2α+2
β , then Mβ,α is bounded from Lp,α(R) to L∞(R).

For 1 ≤ p, θ ≤ ∞ and 0 < s < 1, the Besov space for the Dunkl operators
on R (Besov-Dunkl space) Bs

pθ,α(R) consists of all functions f in Lp,α(R) so
that

‖f‖Bs
pθ,α

= ‖f‖p,α +

(

∫

R

‖τxf(·)− f(·)‖θp,α
|x|2α+2+sθ

dµα(x)

)1/θ

<∞. (1)
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Besov spaces in the setting of the Dunkl operators have been studied by C.
Abdelkefi and M. Sifi [2, 3], R. Bouguila, M.N. Lazhari and M. Assal [5], L.
Kamoun [21], Y.Y. Mammadov [25] and V.S. Guliyev, Y.Y. Mammadov [18].
In the following theorem we prove the boundedness of the Dunkl-type fractional
maximal operator Mβ,α in the Dunkl-type Besov spaces.

Theorem 6. ([18]) For 1 < p < q < ∞, 1
p − 1

q = β
2α+2 , 1 ≤ θ ≤ ∞ and

0 < s < 1 the Dunkl-type fractional maximal operator Mβ,α is bounded from
Bs

pθ,α(R) to B
s
qθ,α(R). More precisely, there is a constant C > 0 such that

‖Mβ,αf‖Bs
qθ,α

≤ C‖f‖Bs
pθ,α

hold for all f ∈ Bs
pθ,α(R).

Definition 7. Let 1 ≤ p < ∞, 0 ≤ λ ≤ 2α+ 2. We denote by Mp,λ,α(R)
the Dunkl-type Morrey space (≡D-Morrey space) as the set of locally integrable
functions f(x), x ∈ R, with the finite norm

‖f‖Mp,λ,α
= sup

t>0, x∈R

(

t−λ

∫

Bt

[τx|f(y)| ]pdµα(y)
)1/p

.

Theorem 8. ([19])

1. If f ∈ M1,λ,α (R), 0 ≤ λ < 2α+ 2, then Mαf ∈WM1,λ,α (R) and

‖Mαf‖WM1,λ,α
≤ C1,λ,α‖f‖M1,λ,α

,

where C1,λ,α depends only on λ,α and n.

2. If f ∈ Mp,λ,α (R), 1 < p < ∞, 0 ≤ λ < 2α + 2, then Mαf ∈ Mp,λ,α (R)
and

‖Mαf‖Mp,λ,α
≤ Cp,λ,α‖f‖Mp,λ,α

,

where Cp,λ,α depends only on p,λ and α.

Theorem 9. ([19]) Let 0 < β < 2α + 2, 0 ≤ λ < 2α + 2 − β and
1 ≤ p < 2α+2−λ

β .

1) If 1 < p < 2α+2−λ
β , then condition 1

p − 1
q = β

2α+2−λ is necessary and
sufficient for the boundedness Mβ,α from Mp,λ,α(R) to Mq,λ,α(R).

2) If p = 1, then condition 1 − 1
q = β

2α+2−λ is necessary and sufficient for
the boundedness Mβ,α from M1,λ,α(R) to WMq,λ,α(R).

For a real parameter α ≥ −1/2, we consider the Dunkl operator, associated
with the reflection group Z2 on R:
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Λα(f)(x) =
d

dx
f(x) +

2α+ 1

x

(

f(x)− f(−x)
2

)

. (2)

Note that Λ−1/2 = d/dx.

For α ≥ −1/2 and λ ∈ C, the initial value problem:

Λα(f)(x) = λf(x), f(0) = 1, x ∈ R,

has a unique solution Eα(λx) called Dunkl kernel [9, 33, 38] and given by

Eα(λx) = jα(iλx) +
λx

2(α + 1)
jα+1(iλx), x ∈ R,

where jα is the normalized Bessel function of the first kind and order α [39],
defined by

jα(z) = 2αΓ(α+ 1)
Jα(z)

zα
= Γ(α+ 1)

∞
∑

n=0

(−1)n(z/2)2n

n!α(n+ α+ 1)
, z ∈ C.

We can write for x ∈ R and λ ∈ C (see Rösler [37], p. 295)

Eα(−iλx) =
Γ(α+ 1)√
πΓ(α+ 1/2)

∫ 1

−1
(1− t2)α−1/2 (1− t) eiλxt dt.

Note that E−1/2(λx) = eλx.

The Dunkl transform Fα of a function f ∈ L1,α(R), is given by

Fαf(λ) :=

∫

R
Eα(−iλx) f(x)dµα(x), λ ∈ R.

Here the integral makes sense since |Eα(ix| ≤ 1 for every x ∈ R [37], p. 295.

Note that F−1/2 agrees with the classical Fourier transform F , given by:

Ff(λ) := (2π)−1/2

∫

R
e−iλx f(x)dx, λ ∈ R.

Proposition 1. (see Soltani [34])

(i) If f is an even positive continuous function, then τxf is positive.

(ii) For all x ∈ R the operator τx extends to Lp,α(R), p ≥ 1 and we have
for f ∈ Lp,α(R),

‖τxf‖p,α ≤ 4‖f‖p,α. (3)

(iii) For all x, λ ∈ R and f ∈ L1,α(R), we have

Fα (τxf) (λ) = Eα(iλx)Fαf(λ).
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Let f and g be two continuous functions on R with compact support. We
define the generalized convolution ∗α of f and g by

f ∗α g(x) :=
∫

R
τxf(−y) g(y) dµα(y), x ∈ R.

The generalized convolution ∗α is associative and commutative, [37]. Note that
∗−1/2 agrees with the standard convolution ∗.

Proposition 2. (see Soltani [34])
(i) If f is an even positive function and g a positive function with compact

support, then f ∗α g is positive.
(ii) Assume that p, q, r ∈ [1,+∞[ satisfying 1/p + 1/q = 1 + 1/r (the

Young condition). Then the map (f, g) 7→ f ∗α g, defined on Ec × Ec, extends
to a continuous map from Lp,α(R)× Lq,α(R) to Lr,α(R), and we have

‖f ∗α g‖r,α ≤ 4‖f‖p,α ‖g‖q,α.
(iii) For all f ∈ L1,α(R) and g ∈ L2,α(R), we have

Fα (f ∗α g) = (Fαf) (Fαg) .

We need the following lemma.

Lemma 1. ([18])
Let 0 < β < 2α + 2. Then for 2|x| ≤ |y| the following inequality is valid

∣

∣

∣τy|x|β−2α−2 − |y|β−2α−2
∣

∣

∣ ≤ 22α+4−β |y|β−2α−3|x|. (4)

3. Generalized Dunkl-type Morrey spaces

If in place of the power function rλ in the definition of Mp,λ we consider any
positive measurable weight function ø(x, r), then it becomes generalized Morrey
space Mp,ω.

Definition 10. Let ø(x, r) positive measurable weight function on Rn ×
(0,∞) and 1 ≤ p <∞. We denote by Mp,ω(R

n) the generalized Morrey spaces,
the spaces of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,ω(Rn) = sup
x∈Rn,r>0

r
−n

p

ω(x, r)
‖f‖Lp(B(x,r)).
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T. Mizuhara [27], E. Nakai [30] and V.S. Guliyev [10] (see also [11]) obtained
sufficient conditions on weights ω and ω ensuring the boundedness of T from
Mp,ω toMp,ω. In [30] the following statement was proved, containing the result
in [27].

In [10], [11], [27] and [30] there were obtained sufficient conditions on weights
ω1 and ω2 for the boundedness of the singular operator T from Mp,ω1

(Rn) to
Mp,ω2

(Rn). In [30] the following conditions was imposed on w(x, r):

c−1ω(x, r) ≤ ω(x, t) ≤ c ω(x, r) (5)

whenever r ≤ t ≤ 2r, where c(≥ 1) does not depend on t, r and x ∈ Rn, jointly
with the condition:

∫ ∞

r
ω(x, t)p

dt

t
≤ C ω(x, r)p. (6)

for the maximal or singular operator and the condition
∫ ∞

r
tp¯ω(x, t)

p dt

t
≤ C rp¯ω(x, r)

p. (7)

for potential and fractional maximal operators, where C(> 0) does not depend
on r and x ∈ Rn.

In [30] the following statements were proved.

Theorem 11. ([30]) Let 1 < p <∞ and ω(x, r) satisfy conditions (5)-(6).
Then the operators M and T are bounded in Mp,ω(R

n).

Theorem 12. ([30]) Let 1 < p < ∞, 0 < β < n
p , and ω(x, t) satisfy

conditions (5) and (7). Then the operators Mβ and Iβ are bounded from
Mp,ω(R

n) to Mq,ω(R
n) with 1

q = 1
p −

β
n .

The following statement, containing the results in [27], [30] was proved in
[10] (see also [11]). Note that Theorems 13 and 14 do not impose the condition
(5).

Theorem 13. ([10]) Let 1 < p < ∞ and ω1(x, r), ω2(x, r) be positive
measurable functions satisfying the condition

∫ ∞

r
ω1(x, t)

dt

t
≤ c1 ω2(x, r), (8)

with c1 > 0 not depending on x ∈ Rn and t > 0. Then for p > 1 the operatorsM
and T are bounded from Mp,ω1

(Rn) to Mp,ω2
(Rn) and for p = 1 the operators

M and T are bounded from M1,ω1
(Rn) to WM1,ω2

(Rn).
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A Spanne type result follows.

Theorem 14. ([10]) Let 0 < β < n, 1 < p < ∞, 1
q = 1

p − β
n and ω1(x, r),

ω2(x, r) be positive measurable functions satisfying the condition

∫ ∞

r
tβω1(x, t)

dt

t
≤ c1 ω2(x, r). (9)

Then for p > 1 the operators Mβ and Iβ are bounded from Mp,ω1
(Rn) to

Mq,ω2
(Rn) and for p = 1 the operatorsMβ and Iβ are bounded fromM1,ω1

(Rn)
to WMq,ω2

(Rn).

Let ω(x, r) be positive measurable weight function on R×(0,∞). The norm
in the space Mp,ω,α(R) may be introduced in two forms,

‖f‖Mp,ω,α = sup
x∈R, t>0

t
− 2α+2

p

ω(x, t)
‖τx|f |‖Lp,α(Bt).

If ω(x, t) ≡ r
− 2α+2

p then Mp,ω,α(R) ≡ Lp,α(R), if ω(x, t) ≡ t
λ−2α+2

p , 0 ≤
λ < 2α+ 2, then Mp,ω,α(R) ≡ Mp,λ,α(R).

4. The Dunkl-type fractional integral operator in

the spaces Mp,ω,α(R)

Theorem 15. Let 1 ≤ p <∞ and the ω(x, r) positive measurable weight
function on R× (0,∞) satisfying the condition

∫ ∞

r
ω(x, t)

dt

t
≤ Cω(x, r). (10)

Then for p > 1 the maximal operator M is bounded from Mp,ω,α(R) to
Mp,ω,α(R) and for p = 1 the maximal operator M is bounded from M1,ω,α(R)
to WM1,ω,α(R).

Proof. The maximal function Mαf(x) may be interpreted as a maximal
function defined on a space of homogeneous type. By this we mean a topological
space X equipped with a continuous pseudometric ρ and a positive measure µ
satisfying

νE(x, 2r) ≤ C0νE(x, r) (11)

with a constant C0 being independent of x and r > 0. Here E(x, r) = {y ∈ X :
ρ(x, y) < r}, ρ(x, y) = |x − y|. Let (X, ρ, µ) be a space of homogeneous type,
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where X = R, ρ(x, y) = |x− y|, dν(x) = dµα(x). It is clear that this measure
satisfies the doubling condition (11).

Define

Mνf(x) = sup
r>0

(νB(x, r))−1
∫

B(x,r)
|f(y)|dν(y).

It is well known that the maximal operator Mν is bounded from L1(X, ν)
to WL1(X, ν) and is bounded on Lp(X, ν) for 1 < p <∞ (see [7]).

The following inequality was proved in [24]

Mαf(x) ≤ CMνf(x), (12)

where C > 0 is independent of f .

Using inequality (12) we have

(∫

Br

[τx (Mαf(y)) ]
pdµα(y)

)1/p

=

(∫

R
[τx (Mαf(y)) ]

pχBr(y)dµα(y)

)1/p

≤ C

(∫

Y
(Mνf(y))

p χB(x,r)(y) dν(y)

)1/p

.

In [20] there was proved that the analogue of the Fefferman-Stein theorem
for the maximal operator defined on a space of homogeneous type is valid, if
condition (11) is satisfied. Therefore,

∫

Y
(Mνϕ(y))

p ψ(y)dν(y) ≤ Cp

∫

Y
|ϕ(y)|pMνψ(y) dν(y). (13)

Then taking ϕ(y) = f(y) and ψ(y) ≡ χB(x,r)(y) we obtain from inequality
(13) that

(∫

Br

[τx (Mαf(y)) ]
pdµα(y)

)1/p

≤ C

(
∫

Y
(Mνf(y))

p χB(x,r)(y) dν(y)

)1/p

≤ Cp

(∫

Y
|f(y)|pMνχB(x,r)(y) dν(y)

)1/p

= Cp

(∫

R
[τx|f(y)| ]pMχBr(y)dµα(y)

)1/p
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≤ Cp

(
∫

Br

[τx|f(y)| ]pdµα(y)

+Cp

∞
∑

j=1

∫

B
2j+1r

\B
2jr

[τx|f(y)| ]pMχBr(y)dµα(y)





1/p

≤ Cp

(∫

pr

[τx|f(y)| ]pdµα(y)
)1/p

+

Cp





∞
∑

j=1

∫

B
2j+1r

\B
2jr

[τx|f(y)| ]p
r2α+2

(|y|+ r)2α+2
dµα(y)





1/p

≤ Cp ‖f‖Mp,ω,αr
2α+2

p



ω(x, r) +
∞
∑

j=1

1

(2j + 1)2α+2
(2j+1r)

2α+2

p ω(x, 2j+1r)





≤ C3 ‖f‖Mp,ω,αr
2α+2

p

(

ω(x, r) + C

∫ ∞

r
ω(x, t)

dt

t

)

≤ C4 r
2α+2

p ω(x, r)‖f‖Mp,ω,α .

Thus, Theorem 15 is proved.

For the Dunkl-type fractional integral operator the following Hardy-Littlewood-
Sobolev type theorem in the generalized Dunkl-type Morrey spaces is valid.

Theorem 16. Let 0 < β < 2α + 2, and 1 ≤ p < 2α+2
β , ω satisfy the

conditions (10) and
∞
∫

t

ω(x, r)rβ−1dr ≤ Cω(x, r)rβ, (14)

1) If 1 < p < 2α+2
β , 1

p − 1
q = β

2α+2 , then I
β,α is bounded from Mp,ω,α(R) to

Mq,ωq/p,α(R).

2) If p = 1, 1 − 1
q = β

2α+2 , then Iβ,α is bounded from M1,ω,α(R) to
WMq,ωq,α(R).

Proof. 1) Let f ∈ Mp,ω,α (R).

Then,
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Iβ,αf(x) =

(

∫

Bt

+

∫

R\Bt

)

τxf(y)|y|-¯2α−2dµα(y)

= F1(x) + F2(x). (15)

Let Iβ,νf be the fractional integral operator on the space of homogeneous
type (X, d, ν):

Iβ,νf(x) =

∫

Y
f(y)d(x, y)α−1 dν(y)

Also, in the work [22], [23] it was proved:

Proposition 3. Let 0 < β < 1, 1 ≤ p < 1
β ,

1
p − 1

q = β. Then the following
two conditions are equivalent:

1) There is a constant C > 0 such that for any f ∈ Lp,ϕ(Y ) the inequality

‖Iβ,ν(fϕβ)‖Lq,ϕ ≤ C‖f‖Lp,ϕ

holds.
2) ϕ ∈ A1+ q

p′
(Y ), 1

p + 1
p′ = 1.

By Proposition 3 and ϕ(y) = (MχB(x,r)(y))
θ ∈ Ap(Y ), 0 < θ < 1, we have

(∫

Bt

τx |F1(y)|q dµα(y)
)1/q

≤
(
∫

R
τx |F1(y)|q (MαχBt(y))

θdµα(y)

)1/q

≤
(
∫

Y

∣

∣

∣Iβ,ν(fϕβ) (y)
∣

∣

∣

q
ϕ(y) dν(y)

)1/q

≤ C2

(∫

Y
|f(y)|p (MνχBt(y))

θ dν(y)

)1/p

= C2

(∫

R
τx|f(y)|p(MαχBt(y))

θdµα(y)

)1/p

≤ C2

(
∫

Bt

τx|f(y)|pdµα(y)
)1/p

+C2





∞
∑

j=1

∫

B
2j+1t

\E
2j t

τx|f(y)|p(MαχBt(y))
θdµα(y)





1/p
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≤ C2

(∫

Bt

τx|f(y)|pdµα(y)
)1/p

+C2





∞
∑

j=1

∫

B
2j+1t

\B
2j t

τx|f(y)|p
t(2α+2)θ

(|y|+ t)(2α+2)θ
dµα(y)





1/p

≤ C3 ‖f‖Mp,ω,α



r
2α+2

p ω(x, t) +
∞
∑

j=1

1

(2j + 1)(2α+2)θ
(2j+1t)

2α+2

p ω(x, 2j+1t)





1/p

≤ C3 ‖f‖Mp,ω,αt
2α+2

p

(

ω(x, t) + C

∫ ∞

t
ω(x, r)

dr

r

)

≤ C4 t
2α+2

p ω(x, t)‖f‖Mp,ω,α .

Hence,

‖F1‖Mq,ω,α = sup
x∈R, t>0

t−
2α+2

q ω−1(x, t)

(
∫

Bt

τx |F1(y)|q dµα(y)
) 1

q

≤ C4‖f‖Mp,ω,α .

Now we estimate |F2(x)|. By the Hölder inequality we have

|F2(x)| ≤
∫

R\Bt

|y|β−2α−2τx|f(y)|dµα(y)

=

∞
∑

j=1

∫

B
2j+1t

\B
2j t

|y|β−2α−2τx|f(y)|dµα(y)

≤
∞
∑

j=1

(

∫

B
2j+1t

\E
2j t

|y|(β−2α−2)p′dµα(y)

)
1

p′
(

∫

B
2j+1t

\B
2j t

τx|f(y)|pdµα(y)
)

1

p

≤ C ‖f‖Mp,ω,α

∞
∑

j=1

(2jt)βω(x, 2jt) ≤ C ‖f‖Mp,ω,α

∞
∫

t

ω(x, r)rβ−1dr

≤ Ctβω(x, t) ‖f‖Mp,ω,α
.

Hence

‖F2‖Mq,ω,α = sup
x∈R, t>0

t
− 2α+2

q ω−1(x, t)

(∫

Bt

τx |F2(y)|q dµα(y)
)

1

q

≤ C sup
x∈R, t>0

ω−1(x, t)tβ ‖f‖Mp,ω,α
ω(x, t)‖χBt‖Lq,α ≤ C‖f‖Mp,ω,α .
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Therefore Iβ,αf ∈ Mq,ωq/p,α(R) and
∥

∥

∥Iβ,αf
∥

∥

∥

M
q,ωq/p,α

≤ C‖f‖Mp,ω,α .

2) Let f ∈ M1,ω,α(R). By the (15), we get

|F1| ≤
∫

Et

τx |f(y)| |y|β−2α−2dµα(y)

≤
−1
∑

k=−∞

(

2kt
)β−2α−2

∫

B
2k+1t

\B
2kt

τx |f(y)| dµα(y).

Hence

|F1(x)| ≤ CtβMαf(x). (16)

Then

µα

({

y ∈ Bt : τx

∣

∣

∣Iβ,αf(y)
∣

∣

∣ > 2s
})

≤ µα(| {y ∈ Bt : τx|F1(y)| > s}) + µα(| {y ∈ Bt : τx|F2(y)| > s}).

Taking into account inequality (16) and Theorem 8, we have

µα({y ∈ Bt : τx|F1(y)| > s})

≤ µα

({

y ∈ Bt : τx(Mαf(y)) >
s

Ctβ

})

≤ Ctβ

s
· ω(x, t) ‖f‖M1,ω,α

,

and thus if Ct
−2α−2

q ω(x, t) ‖f‖M1,ω,α
= s, then |F2(x)| ≤ β and consequently,

µα({y ∈ Bt : τx|F2(y)| > s}) = 0.
Finally,

µα(
{

y ∈ Bt : τx|Iβ,αf(y)| > 2s
}

) ≤ C

s
ω(x, t)tα ‖f‖M1,ω,α

= Cωq(x, t)

(

‖f‖M1,ω,α

s

)q

.

Thus Theorem 16 is proved.

Theorem 17. For 1 < p < q < ∞, 1
p − 1

q = β
2α+2 , 1 ≤ θ ≤ ∞ and

0 < s < 1 the Dunkl-type fractional integral operator Iβ,α is bounded from
Bs

pθ,ω,α(R) to B
s
qθ,ωq/p,α

(R). More precisely, there is a constant C > 0 such that

‖Iβ,αf‖Bs

qθ,ωq/p,α
≤ C‖f‖Bs

pθ,ω,α

holds for all f ∈ Bs
pθ,ω,α(R).
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Proof. For x ∈ R, let τx be the generalized translation by x. By definition
of the generalized Dunkl-Besov-Morrey type spaces it suffices to show that

‖τxIβ,αf − Iβ,αf‖p,α ≤ C‖τxf − f‖p,α.
It is easy to see that τx commutes with Iβ,α, i.e. τxI

β,αf = Iβ,α(τxf). Hence
we have

|τxIβ,αf − Iβ,αf | = |Iβ,α(τxf)− Iβ,αf | ≤ Iβ,α(|τxf − f |).
Taking Lq,α(R) norm on both ends of the above inequality, by the boundedness
of Iβ,α from Mp,ω,α(R) to Mq,ωq/p,α(R), we obtain the desired result. Theorem
17 is proved.
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