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Abstract: This paper discusses on the construction of condensed Fibonacci
trees and present the Markov chain corresponding to the condensed Fibonacci
trees. An n × n finite Markov probability transition matrix for this Markov
chain is presented and it is proved that the limiting steady state probabilities
are proportional to the first n Fibonacci numbers.
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1. Introduction

Most natural / artificial dynamic phenomena are endowed with a nondeter-
ministic description. Stochastic processes provide appropriate mathematical
models of such phenomena. Among the class of stochastic processes, Markov
chains are highly utilized for many dynamic phenomena because of demonstra-
tion of equilibrium behavior. Efficient computation of equilibrium / transient
probability distribution of a Discrete Time Markov Chain (DTMC) / Contin-
uous Time Markov Chain (CTMC) is considered to be an interesting research
problem. A Markov chain on Ω is a stochastic process {X0,X1 . . . ,Xt . . .} with
each Xi ∈ Ω such that Pr(Xt1 = y/Xt = x,Xt−1 = xt−1, . . . , X0 = x0) =
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Pr(Xt1 = y/Xt = x =: P (x, y). Hence, the Markov chain in the matrix can
be described by a |Ω × Ω| matrix P whose (i, j)th entry is P (x, y). A random
variable is said to be discrete, if there exists a finite or countable set S ⊂ M
such that P [X ∈ S] = 1.

Definition 1. Let {Xk} be a discrete-time stochastic process which takes
on values in a countable set Ω, called the state space. {Xk} is called a Discrete

Time Markov chain or simply a Markov chain, when the discrete nature of the
time index is clear, if P (Xk = ik|Xk−1 = ik−1,Xk−2 = ik−2, . . .) = P (Xk =
ik|Xk−1 = ik−1), where ij ∈ S. A Markov chain is said to be time homogeneous,
if P (Xk = i|Xk−1 = j) is independent of k.

Associated with each Markov chain there is a matrix called the prob-
ability transition matrix, denoted by P , whose (i, j)th element is given by
Pij = P (xk = j|xk−1 = i). Let p[k] denote a row vector of probabilities
with pj [k] = P (Xk = j). This vector of probabilities evolves according to the
equation p[k] = p[k−1]P . Thus, p[0] and P capture all the relevant information
about the dynamics of the Markov chain. If there exist a π so that π = πP ,
then π is called a stationary distribution. With stationary distributions defined,
a natural question is whether every Markov chain has a stationary distribution,
and whether it is unique. Also, if there exists a unique stationary distribution,
is it always lim

k→∞

p[k] = π for all p[0]?. In other words, does the distribution

of the Markov chain converge to the stationary distribution starting from any
initial state?. Unfortunately, not all Markov chains have a unique steady-state
distribution.

2. Graphical representation of Markov Chain

Consider a Markov chain with state space Ω and transition matrix P . Then,
a corresponding graphical representation is the weighted graph G = (V,E),
where V = Ω and E = {(x, y) ∈ Ω × Ω/P (x, y) > 0}. Also, edge (x, y) has
weight P (x, y) > 0. Self loops are allowed since one can have P (x, x) > 0. An
edge is present between x and y if and only if the transition probability between
x and y is non-zero. The critical point in the theory of Markov chain depends
not on the exact values of the entry but rather on whether a particular entry is
zero or not. Hence, in terms of graphs, the critical thing is the structure of the
graph G rather than the values of its edge weights. Hence, given a homogeneous
DTMC, there is a state transition matrix which is naturally associated with its
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equilibrium / transient behavior, and the state transition diagram, which is
a weighted directed graph. The weights are effectively probabilities in such a
directed graph. Similarly, a homogeneous CTMC is represented using a state
transition rate diagram which is a weighted, directed graph. The weights are
state transition rates. In general, it is always possible to represent a time-
homogeneous Markov chain by a transition graph.

A Markov chain is irreducible if there is some value n so that for any states
x, y, if you start at x and take n steps, there is a positive probability you end
up at y. Equivalently, if the Markov chain has transition matrix P , then all
entries of Pn are strictly positive. One can think of irreducibility of a Markov
chain as a property of the graph that marks which states can transition to
which state. To a Markov chain M, associate a directed reachability graph GM

whose nodes are states, with a directed edge for each transition that occurs
with positive probability. The digraph G(P ), corresponding to an irreducible
Markov chain P, is hence strongly connected, and G(P ) is connected in the case
if the corresponding graphical representation is undirected. A Markov chain M
is ergodic if and only if (i) the graph GM is irreducible. and (ii) the graph GM

aperiodic, which means, the gcd of the lengths of positive probability cycles of
GM is 1. Hence, the strongly-connectedness condition means that no matter
which state you start in, you eventually reach every other state with positive
probability. The aperiodicity condition rules out, that a random walk on a
bipartite graph where you necessarily alternate between the two halves on odd
and even steps. Together, these conditions suffice to guarantee that there’s a
unique stationary distribution.

We have the following results proved in [1].

Theorem 2. ([1]) Any ergodic Markov chain has a unique stationary

distribution.

Theorem 3. ([1]) A finite state space, irreducible Markov chain has a

unique stationary distribution π and if it is aperiodic, lim
k→∞

p[k] = π for all p[0].

3. Markov chains have a unique steady-state distribution

A number of important properties of the Markov chain (typically derived us-
ing matrix manipulations) can be deduced from this graphical representation.
Moreover, certain concepts from algebra will also be illuminated by developing
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this approach. In addition, the graph-theoretic representation immediately sug-
gests several computational schemes for calculating important structural char-
acteristics of the underlying problem. An important concept in the analysis of
Markov chains is the categorization of states as either recurrent or transient.
The Markov chain, once started in a recurrent state, will return to that state
with probability 1. However, for a transient state there is some positive prob-
ability that the chain, once started in that state, will never return to it. This
same concept can be illuminated using graph-theoretic concepts, which do not
involve the numerical values of probabilities. Define node i to be transient if
there exists some node j for which i → j but j 6→ i, and node i is called recur-
rent. Let T denote the set of all transient nodes, and let R = V − T be the set
of all recurrent nodes. Thus, in the theory of directed graphs, an irreducible
Markov chain M is simply one whose digraph G is strongly connected. In gen-
eral, the communicating classes of M are just the maximal strongly connected
subgraphs of G, the strong components of G. It is known that if nodes i and j
lie on a common circuit, then they belong to the same strong component, and
conversely. As a consequence, when the vertices within each strong component
are combined into a new vertex say, supervertex, then the condensed graph G?
governing these supervertices can contain no cycles, and hence, G? is an acyclic
graph. Hence, the state transition diagram G of the finite chain M allows one to
classify each vertex as either recurrent or transient. In addition, these concepts
are important in connection with stationary distributions π = [π1, π2, . . . , πn]
for a Markov chain having states N = {1, 2, . . . , n}. These probabilities repre-
sent the long run proportion of time the chain M spends in each state. Such
probabilities can be found by solving the linear system π = πP ,

∑

j∈N πj = 1.

Remark 4. If G is strongly connected then there is a unique stationary
distribution p for M . Moreover, this distribution satisfies πj > 0 for all j ∈
V . If the condensed graph G for M has a single supervertex with no leaving
edges then, there is a unique stationary distribution π for M . Moreover, this
distribution satisfies πj > 0 for all j ∈ R, and πj = 0 for all j ∈ T . One may
also note that the vertices in strong component Gi consist of those vertices that
are descendants of ri but are not in Gk, 1 ≤ k < i.

Remark 5. M has period d if and only if its digraph G can be partitioned
into d sets C0, C1, . . . , Cd−1 such that (a) if i ∈ Ck and (i, j) ∈ E then j ∈
C(k+1)modd and (b) d is the largest integer with this property. Define a relation
on the nodes of the strongly connected graph G associated with M, assumed to
have period d. Namely, define i ∼ j if every (i, j)-path has length 0 modulo d.
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Also since, since G is strongly connected, a path exists between every pair of
nodes in G and hence, the relation i ∼ j is an equivalence relation. Hence,
for every pair of nodes i and j in G, all (i, j)-paths in G have the same length
modulo d. Hence, let Q1 and Q2 be (i, j1) and (i, j2)-paths in G, respectively.
If l(Q1) mod d = l(Q2) mod d, then j1 and j2 are elements of the same
equivalence class. This establishes the characterization for the period d of
an irreducible Markov chain. Consequently, determining d can be reduced to
finding an appropriate partition of the nodes in the associated digraph G, which
can be accomplished efficiently in conjunction with a breadth-first search of the
digraph G.

Consider an unweighted, undirected graph with the symmetric adjacency
matrix A. Let the associated diagonal matrix of degree values of each of the
nodes be denoted by D. It is clear that P = D−1A is clearly a stochastic sym-
metric matrix. Thus, we can naturally associate a homogeneous DTMC, based
on such a matrix. The state transition diagram of such a DTMC is obtained
from the original graph by replacing each edge with two directed edges in oppo-
site directions. Given a simple graph G with M vertices, its Laplacian matrix
L is defined as L = D − A, where D is the diagonal degree matrix and A is
the symmetric adjacency matrix. Now consider the matrix Q = −L = A−D.
Then, Q satisfies all the properties required by a generator matrix, and thus Q
is naturally associated with a homogeneous CTMC. If the transient probabil-
ity distribution of a homogeneous CTMC, described by the generator matrix
Q, such a Q is associated with a state transition rate diagram, which is a
directed graph. Then, the transient probability distribution is computed as
¯π(t) = ¯π(0)eQt = ¯π(0)e(A−D)t, where matrix exponential eQt can be efficiently

computed since Q is a symmetric generator matrix. Consider a directed, un-
weighted graphs. Let Din be the degree matrix associated with edges incident
at various nodes and let Ain be the adjacency matrix associated with the edges
incident at various vertices. Hence, Qin = Ain−Din is symmetric, has the prop-
erties of a generator matrix, and thus, a homogeneous CTMC can be associated
with such a directed, unweighted graph.

Similarly, CTMC / DTMC can be naturally associated with such graphs
ignoring the weights on the edges or considering all the edge weights to one.
Such an approach can be utilized with weighted graphs that are directed or
undirected. More interestingly, a DTMC can be associated with a weighted,
undirected graph by normalizing the weight of each edge. That is, consider
any vertex, say vi. Let vi be connected to vertex vj . Normalize the weight of
such edge by the sum of weights of all edges incident at the vertex vi. Hence,
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normalized weight from node vi to vj is W̄ij =
wij∑
k wik

, with
∑

j W̄ij = 1, and

hence, the matrix of normalized weights is a stochastic matrix. Hence, a DTMC
is always associated with a weighted, undirected graph and, the equilibrium and
transient probability distribution of such a DTMC can be determined.

4. Fibonacci tree and Markov chain

Following [2], the Fibonacci tree of order k has Fk terminal vertices, where {Fk}
are the Fibonacci numbers F0 = 0, F1 = 1, Fk = Fk−1 + Fk−2, and is defined
inductively as, if k = 1 or 2, the Fibonacci tree of order k is simply the rooted
tree. If k ≥ 3 the left subtree of the Fibonacci tree of order k is the Fibonacci
tree of order k − 1, and the right subtree is the Fibonacci tree of order k − 2.

Figure 1: Fibonacci tree

The Fibonacci tree of order k will be denoted by Tk. This definition will
serve as a recursive definition for an infinite sequence of trees T1, T2 . . . , Tk

. Then the tree Tk with k > 2 will have Fk leaf-vertices, since the Fibonacci
number sequence is defined in the same recursive way, namely Fk = Fk−1+Fk−2

with starting values F1 = 1 and F2 = 1. Notice that successive numbers of
leaf-vertices in the trees, after T1 and T2, are 2, 3, 5, 8, . . . which are Fibonacci
numbers. Note also that each tree after the second is constructed by mounting
the two previous trees on a fork as in Figure 1. If there are a total of N
nodes, any particular node is landed upon with probability 1

N
. By the recursive

definition of Tk, the total number Nk of nodes in the kth Fibonacci tree Tk, we
see that Nk = 1+Nk−l+Nk−2. This implies Nk+1 = (Nk−l+1)+ (Nk−2+1),
which implies Nk = 2Fk − 1, with N1 = N2 = 1.
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One may notice that, in the theory of DTMCs based on doubly stochas-
tic state transition matrix, the equilibrium distribution of DTMC is given by
[ 1
M
, 1
M
, 1
M
, . . . , 1

M
, ], where the matrix P is of dimension M ×M. That is, the

equilibrium distribution achieves maximum entropy possible (uniform distribu-
tion).

From [1] it is known the following:

Lemma 6. ([1]) The transient probability distribution of DTMC associ-

ated with an undirected, unweighted graph is given by π̄(n+1) = π̄(0)D−nAn =
π̄(0)AnD−n.

Thus, the higher powers of adjacency matrix and higher powers of degree
matrix play an important role in computing the transient probability distribu-
tion. We have, π̄(n + 1) = π̄(0)pn = µ̄(0, n)An. But, since A is symmetric,
it has real eigen values and the corresponding eigenvectors are orthonormal.
Thus, An =

∑N
i=1 ρ

nf̄1ḡ1.

Each stage of the rooted Fibonacci tree may be considered as a finite one
dimensional random walk with equal probabilities of one step to the right or
two step to the left except near the endpoints. There is also a probability of a
movement directly to zero. We now construct a condensed Fibinacci tree whose
markov chain or equivalently, the corresponding digraph, can be explained as
follows. The states of the Markov chain as {T1, T2, T3, . . . , Tn} as the vertex
set of the digraph G. That is, V (G) = {T1, T2, T3, . . . , Tn} and the arc set
D(G) of G is, D(G) = {(T1, T2)}

⋃

{(T2, T1)}
⋃

{(Ti, Ti)}
⋃

{(Ti, Tj)/ i < j, j =
i+ 1}

⋃

{(Tj , Ti)/j > i, j = i+ 2}
⋃

{(Tn, Tn)}.

The respective transition matrix could be considered as

P =













1
2

1
2 0 0 0

1
2 0 1

2 0 0
1
2 0 0 1

2 0
0 1

2 0 0 1
2

0 0 1
2 0 1

2













.

So this Markov chain could represent a population with limited capacity
which increases with a birth, decreases with a death, and allows a mass migra-
tion of everyone out of the present location, which would lower the population
to zero. There is a Fibonacci connection to the Fibinacci tree Markov matrix.
We can find the limiting probability (steady state) vector for this Markov chain
and show that it has Fibonacci type entries.



248 K.A. Germina

Lemma 7. The Markov chain of condensed Fibonacci tree graph is irre-

ducible and ergotic.

Proof. The proof follows since the irreducibility of the the Markov chain is
the property of the associated digraph GM , which is strongly connected. Since,
GM has no leaves and each vertex has a unique neighbour set, GM is irreducible
and hence, the Markov Chain is ergodic.

We have the following result from [1].

Theorem 8. ([1]) An ergodic Markov chain has a unique stationary dis-

tribution.

Invoking Theorem 8 we get the following:

Lemma 9. An ergodic Markov chain of condensed Fibonacci tree graph

has a unique stationary distribution

The following theorem gives the limiting probability vector for the transition
matrix of the condensed Fibonacci tree.

Theorem 10. The matrix P =































1
2

1
2 0 0 . . . 0 0 0

1
2 0 1

2 0 . . . 0 0 0
1
2 0 0 1

2 . . . 0 0 0
0 1

2 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...

0 0
...

... 0 0 1
2 0

0 0
...

... 0 0 0 1
2

0 0 0 0 . . . 1
2 0 1

2































is the n×n transition matrix for the condensed Fibonacci tree for a discrete

time Markov chain. Also the limiting probability is

π = (
Fn

Fn+2 − 1
,

Fn−1

Fn+2 − 1
,

Fn−2

Fn+2 − 1
, . . . ,

F1

Fn+2 − 1
).

Proof. From the construction of the digraph of the condensed Fibonacci tree
with the states of the Markov chain as {T1, T2, T3, . . . , Tn} as the vertex set and
the arc set D(G) of G as D(G) = {(T1, T2)}

⋃

{(T2, T1)}
⋃

{(Ti, Ti)}
⋃

{(Ti, Tj)/
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i < j, j = i + 1}
⋃

{(Tj , Ti)/j > i, j = i + 2}
⋃

{(Tn, Tn)}. Clearly, the matrix
P is the transition matrix. The balance equation for state n − 1 comes from
the last column, which represents the initial condition for Fibonacci recursion.
Thus, πn−1 = bπn−2 + (1 − b)πn−1, which implies, πn−2 = πn−1. The balance
equation for the state n − 2 comes from the second last column and hence,
πn−3 = 2πn−2 = 2πn−1. The balance equations for states 1, 2, 3, . . . , n − 3
come from columns 2, 3, . . . , n−2 and are of the type, πi =

1
2πi−1+

1
2πi+2. This

implies, πi+2 = 2π−πi−1. Since, Fibonacci numbers satisfy the equation Fi+1 =
2F1 + 1 − F1+2 for all, i, we conclude that, π’s give the Fibonacci ratio in the
reverse order. The initial conditions are implied by the final two columns. But,
F1+F2+. . .+Fn = Fn+2−1 and the limiting probabilities must sum to 1, we get
the limiting probability form as π = ( Fn

Fn+2−1 ,
Fn−1

Fn+2−1 ,
Fn−2

Fn+2−1 , . . . ,
F1

Fn+2−1).

5. Conclusion

Since the recursion relationship for the Lucas numbers is the same as that of the
Fibonacci numbers, we should be able to construct the condensed Lucas tree
and get the corresponding probability transition matrix by modifying the last
two columns of P . Hence, one can find a whole class of probability transition
matrices with the same limiting probability vector by using similar methods
which convert probability transition matrices for discrete time Markov chains
into infinitesimal generators for continuous time Markov processes and vice-
versa.
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