ANALYTICAL SOLUTION OF TIME-FRACTIONAL
NONLINEAR BENJAMIN-BONA-MAHONY EQUATION
BY RESIDUAL POWER SERIES METHOD

Abstract

In this paper a new iterative technique, named as residual power series (RPS) method, is applied to find the approximate solution of the nonlinear time-fractional Benjamin-Bona-Mahony (BBM) equation. The results obtained by numerical experiments are compared with the analytical solutions to confirm the accuracy and efficiency of the proposed technique.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 2
Year: 2018

DOI: 10.12732/ijam.v31i2.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.
  2. [2] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501-544
  3. [3] Sh. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Appl. Math. Comput., 169 (2005), 1186-1194.
  4. [4] J.H. He, Comparison of Homotopy perturbation method and homotopy analysis method, Appl. Math. Comput., 156 (2004), 527-539.
  5. [5] J.H. He, Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. Math. Appl. Mech. Engrg., 167 (1998), 69-73.
  6. [6] J.H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., 114 (2000), 115-123.
  7. [7] D.D. Ganji, The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355 (2006), 337-341.
  8. [8] D.D. Ganji, M. Rafei, Solitary wave solutions for a generalized HirotaSatsuma coupled KdV equation by homotopy perturbation method, Phys. Lett. A , 356 (2006), 131-137.
  9. [9] R. Hirota, Exact solutions of the Korteweg-De Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1194.
  10. [10] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin (1986).
  11. [11] K. Al-Khaled, S. Momani, A. Alawneh, Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations, Appl. Math.Comput., 171 (2005), 281.
  12. [12] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, California (1974).
  13. [13] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).
  14. [14] S.S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1130-1295.
  15. [15] I. Podlubny, Fractional Differential Equations, Academic Press, California (1999).
  16. [16] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 53055323.
  17. [17] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81-95.
  18. [18] R. Magin, X. Feng, D. Baleanu, Solving fractional order Bloch equation, Concept Magnetic Res., 34A (2009), 16-23.
  19. [19] O.A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math.,5 (2013), 31-52.
  20. [20] O.A. Arqub, A. El-Ajou, A. Bataineh, I. Hashim, A representation of the exact solution of generalized Lane Emden equations using a new analytical method, Abstr. Appl. Anal., 2013 (2013), Article ID 378593.
  21. [21] A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, D. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119-133.
  22. [22] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471-493.
  23. [23] C.A. Gomez, A.H. Salas, Exact solutions for the generalized BBM equation with variable coefficients, Math. Probl. Eng., 4, No 9 (2010), 394-401.
  24. [24] P.G. Estevez, S. Kuru, J. Negro, L.M. Nieto, Traveling wave solutions of the generalized Benjamin-Bona-Mahony equation, Chaos Sol. Fract., 40 (2009), 2031-2040.
  25. [25] C.A. Gomez, A.H. Salas, B.A. Frias, New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations, Appl. Math. Comput., 217 (2010), 1430-1434.