In this paper a new iterative technique, named as residual power series (RPS) method, is applied to find the approximate solution of the nonlinear time-fractional Benjamin-Bona-Mahony (BBM) equation. The results obtained by numerical experiments are compared with the analytical solutions to confirm the accuracy and efficiency of the proposed technique.
[7] D.D. Ganji, The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys. Lett. A, 355 (2006), 337-341.
[8] D.D. Ganji, M. Rafei, Solitary wave solutions for a generalized HirotaSatsuma coupled KdV equation by homotopy perturbation method, Phys. Lett. A , 356 (2006), 131-137.
[9] R. Hirota, Exact solutions of the Korteweg-De Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192-1194.
[10] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer, Berlin (1986).
[11] K. Al-Khaled, S. Momani, A. Alawneh, Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations, Appl. Math.Comput., 171 (2005), 281.
[12] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order, Academic Press, California (1974).
[13] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).
[14] S.S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1130-1295.
[15] I. Podlubny, Fractional Differential Equations, Academic Press, California (1999).
[16] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 53055323.
[17] A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81-95.
[18] R. Magin, X. Feng, D. Baleanu, Solving fractional order Bloch equation, Concept Magnetic Res., 34A (2009), 16-23.
[19] O.A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math.,5 (2013), 31-52.
[20] O.A. Arqub, A. El-Ajou, A. Bataineh, I. Hashim, A representation of the exact solution of generalized Lane Emden equations using a new analytical method, Abstr. Appl. Anal., 2013 (2013), Article ID 378593.
[21] A. El-Ajou, O. A. Arqub, S. Momani, D. Baleanu, D. Alsaedi, A novel expansion iterative method for solving linear partial differential equations of fractional order, Appl. Math. Comput., 257 (2015), 119-133.
[22] A. El-Ajou, O. A. Arqub, Z.A. Al Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique, Entropy, 16 (2014), 471-493.
[23] C.A. Gomez, A.H. Salas, Exact solutions for the generalized BBM equation with variable coefficients, Math. Probl. Eng., 4, No 9 (2010), 394-401.
[24] P.G. Estevez, S. Kuru, J. Negro, L.M. Nieto, Traveling wave solutions of the generalized Benjamin-Bona-Mahony equation, Chaos Sol. Fract., 40 (2009), 2031-2040.
[25] C.A. Gomez, A.H. Salas, B.A. Frias, New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations, Appl. Math. Comput., 217 (2010), 1430-1434.