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Abstract: The analysis of Urysohn-Stieltjes integral operators has been stud-
ied in [1]. Here we study the existence of weakly solution of functional integral
equations of Urysohn-Stieltjes type and Hammerstien-Stieltjes type in the re-
flexive Banach space E. Also, we prove the existence of the weak maximal and
weak minimal solutions.
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1. Introduction and Preliminaries

Consider the nonlinear Urysohn-Stieltjes integral equation

1
z(t) = a(t) —1—/0 f(t,s,x(s)) dsg(t,s), t € I =10,1], (1)

where g : I x I — R and the symbol dg indicates the integration with respect
to s. Equations of type (1) and some of their generalizations were considered in
paper (see [3]), for the properties of the Urysohn-Stieltjes integral (see Banas

[1])-
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In this paper, we study the existence of weak solutions x € C[I, E] of the
Urysohn-Stieltjes functional integral equation

1
£(t) = alt) + /0 F(t,5,200(s)) duglt,s), te L. (2)

As an application, we study the existence of weak solutions x € C[I, E] of the
Hammerstien-Stieltjes functional integral equation

1
£(t) = a(t) + / Kt 5)f1(5, 2(6(5)) dag(t,s), te I (3)

Also, the existence of the weak maximal and weak minimal solutions will be
proved.

Let E be a reflexive Banach space with norm || . || and dual E*. Denote
by CII, E] the Banach space of strongly continuous functions z : I — E with
Sup-norm.

Now, we shall present some auxiliary results that will be need in this work.
Let E be a Banach space (need not be reflexive) and let « : [a,b] — E, then:

(1-) z(.) is said to be weakly continuous (measurable) at ¢y € [a, b] if for every
¢ € E*, ¢(x(.)) is continuous (measurable) at tg.

(2-) A function h: F — E is said to be weakly sequentially continuous if A
maps weakly convergent sequences in FE to weakly convergent sequences
in E.

If x is weakly continuous on I, then z is strongly measurable and hence weakly
measurable (see [14] and [10]). It is evident that in reflexive Banach spaces,
if z is weakly continuous function on [a, b], then x is weakly Riemann integrable
(see [14]). Since the space of all weakly Riemann-Stieltjes integrable functions
is not complete, we will restrict our attention to the existence of weak solutions
of equation (2) in the space C[I, E].

Definition 1. Let f : IXxE — E. Then f(t,u) is said to be weakly-weakly
continuous at (tg,ug) if given € > 0, ¢ € E* there exists 6 > 0 and a weakly
open set U containing ug such that

| p(f(t,u) — f(to, uo)) |< €

whenever
|t —tp|<d and ue U.
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Now, we have the following fixed point theorem, due to O’Regan, in the
reflexive Banach space (see [18]) and some propositions which will be used in
the sequel (see [12]).

Theorem 2. Let E¥ be a Banach space and let () be a nonempty, bounded,
closed and convex subset of C[I, E] and let F :Q — @ be a weakly sequen-
tially continuous and assume that F'Q(t) is relatively weakly compact in E for
each t € I. Then, F has a fixed point in the set ().

Proposition 1. In reflexive Banach space, the subset is weakly relatively
compact if and only if it is bounded in the norm topology.

Proposition 2. Let E be a normed space with y € E and y # 0. Then
there exists a p € E* with || ¢ ||=1 and ||y ||= ¢(y).

2. Main results

In this section, we present our main result by proving the existence of weak
solutions for equation (2) in the reflexive Banach space. Let us first state the
following assumptions:

(i) a:I — I is continuous function.
(ii) v : 1 — I is continuous function such that (t) < t.
(iii) f:IxIxDCE — E satisfies the following conditions:

(1) f(.,s,x(s))is continuous function, Vs € I,z € D C E.
(2) f(t,.,.) is weakly-weakly continuous function, V¢ € I.

3) || f(t,s,x) [|[<m(t,s)+b|lx||, m:IxI— Iiscontinuous function,
b is positive constant for ¢t,s € I, x € D. Moreover, we put M =
max{m(t,s): t,s € I}.

(iv) The functions ¢t — ¢(t,1) and ¢ — g(¢,0) are continuous on I, such that

= max{sup | g(t,1) | + sup | g(¢t,0) |, t €I}
t t

(v) For all t1,ty € I such that t; < to the function s — g(te,s) — g(t1, s) is
nondecreasing on [.

(vi) ¢(0,s) =0 for any s € I.
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Remark 1. Observe that assumptions (v) and (vi) imply that the func-
tion s — g(t,s) is nondecreasing on the interval I, for any fixed ¢ € I (Remark
1 in [4]). Indeed, putting to = ¢, t; = 0 in (v) and keeping in mind (vi), we
obtain the desired conclusion. From this observation, it follows immediately
that, for every t € I, the function s — g(t, s) is of bounded variation on I.

Definition 3. By a weak solution to (2) we mean a function € C[I, E] which
satisfies the integral equation (2). This is equivalent to finding z € C[I, E] with

o(x(t)) /ftsx s))) dsg(t,s)), tel, ¥V peE".

Theorem 4. Under the assumptions (i)-(vi), the Urysohn-Stieltjes func-
tional integral equation (2) has at least one weak solution x € C[I, EJ.

Proof. Define the operator A by
Ax( /ftsx s))) dsg(t,s), tel.

For every = € C[I, E], f(.,s,z(¢(s))) is continuous on I, and f(t, .,.) is weakly-
weakly continuous on I, then ¢(f(¢,s,x(¢(s)))) is continuous for every ¢ €
E*, g is of bounded variation. Hence f(t,s,z(¢(s))) is weakly Riemann-
Stieltjes integrable on I with respect to s — ¢(t,s). Thus A makes sense.

Now, define the set @), by
lall + Mp

Qr=Az€ClLE: Jzl<r r="7—p"}

The remainder of the proof will be given in four steps.
First, we will prove that the operator A maps C[I, E] into C[I, E].

Let € >0, t1, to €1, to > t1, and to — t1 < €, without loss of generality,
assume that Ax(te) — Ax(ty) # 0,
| Az(t2) — Az(t) | < (t2) — a(t1)) |

+o / F(t2 5, 2(6(5))) daglta, s)
- / o(F(tr, 5,2(6(5)))) dugltr, s) |

< [la(t2) —a(t) ||+|/ f(t2,8,2(1(s)))) dsg(ta, 5)
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1
- / o(F(t1, 5, 2(0(5))) dag(ta,5) |
+ |/ ft1, s, z( ) dsg(ta,s)
- / o(f(tr5,2(5))) dag(tr,s) |

< |a(t2) —a(ty) |

1 s
+ / | @(f(t25,2((5)) = F(tr,5,2(8())) | ds(\/ g(t2,2))

z2=0
+ /w (t1,5,26()) | da(\/ [gt 2) — g(t1, 2))])
z=0
< Nalts) = a(t) || + | F(t2,5,2) — (1,5, u/ dug(t,5)
" / | £t ,2) | dalg(ta, ) — gt )]
< Nalta) —alty) | + | Ftz 5,2) — F(tr,5,2) | [g(ta: 1) — g(t2, 0)]
1
" / m(t.s) dilo(ta,) =gt )] + [ Vlal] dlotta.) = (e o)
< a(ta) —a(ty) || + || f(t2,s,2) — f(t1,s,x) || [g(t2, 1) — g(t2,0)]
1 1
oM / dalg(tz ) — g(tr, )] + br / dalg(ta,s) — g(t1, )
0 0
< Nalty) —alts) | + | Ftz 5,2) — F(tr,5,2) | [g(ta: 1) — g(t2, 0)]
+ (M +0br)[(g(t2,1) — g(t1,1)) — (g(t2,0) — g(t1,0))]
< Nalta) —alts) | + | fltz 5,2) — f(tr,5,2) | [g(ta, 1) — g(t2, 0)]
LM+ b)]] gltn 1) — gt 1) |+ | 9(t2,0) — g(t1,0) |l
Hence,

| Az(tz) — Az(t1) [|<] a(t2) —alt1) |
+ || f(ta,s,2) — f(t1,s,2) || [g(t2,1) — g(t2,0)]
+ (M +br)[] g(t2, 1) — g(t1,1) | + | g(t2,0) — g(t1,0) [],

then from the continuity of the function g assumption (iv) we deduce that A
maps C[I, E] into C[I, E].
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Secondly, we will prove that the operator A maps @, into Q..
Take = € @Q,, without loss of generality assume Ax # 0, t € I. By
Proposition 2, we have

| Ax(t) | = @(Ax(t))
1

< wwmwwqéﬂwmwmwawm
1 S

< um+/|wm@ﬂwm»wuvmm»

0 z=0

1 s

< Hm+4ummwnmvmm»

z=0

1 1
< ww+émm$@wm+lbwwam>

1 1
< lal +M/0 dsg(t,s) + br/o dsg(t, s)
< lal[+M[g(t,1) —g(t,0) |+ br[ g(t,1) — g(t,0) |
< lalf (M +br) Sup | g(t,1) | +S£1€1}> | 9(t,0) | ]
< al +(M+br)p.

Then,
[ Az(t) | < lla| +(M+br)p=r.

Hence Az € @, which prove that A : @, — @, and AQ), is bounded in C|[I, E].

Thirdly, we will prove that AQ,(t) is relatively weakly compact in E.

Note that @), is nonempty, uniformly bounded and strongly equicontinuous
subset of C[I, E], by the uniform boundedness of AQ,., according to Proposition
1, AQ), is relatively weakly compact.

Finally, we will prove that the operator A is weakly sequentially continuous.
Let {z,(t)} be sequence in @, weakly convergent to z(t) in F, since @, is
closed we have x € Q,. Fix t,s € I, since f satisfies (1)-(2), then we have
ft, s,y ((s))) converges weakly to f(t,s,z(1(s))). Furthermore, (V ¢ €

E*) o(f(t,s,xn(1(s)))) convergence strongly to ¢(f(t,s,z(¢(s)))).
Applying Lebesgue dominated convergence theorem,

1 1
sO(/O f(t;s,2n((s))) dsg(t, s)) :/0 p(f(t s, 20(1(5)))) dsg(t, s)
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1
- / Dt 5,2((s)))) dug(t,s), Vo € B*, t €1,

ie. p(Ax,(t)) — @(Ax(t)), Yt €I, Ax,(t) converging weakly to Ax(t) in E.
Thus, A is weakly sequentially continuous on Q).

Since all conditions of Theorem 2 are satisfied, then the operator A has
at least one fixed point x € @, and the Urysohn-Stieltjes functional integral
equation (2) has at least one weak solution. O

3. Hammerstien-Stieltjes function integral equation

Consider the following assumption:

(#i1)* Let f1 : I x E— F and k : I x I — R, assume that fi,k satisfy the
following assumptions:
(1)*  fi(s,z(1(s))) is weakly-weakly continuous function.

(2)* There exists a continuous function my(t) and constant b > 0 such
that

| 1t ) [|< ma(t) + blz]],

for t,s € I, x € E. Moreover, we put M; = max{mi(t) : t €
I}, My > 0.

(3)* k(t,s) is continuous function such that
K =sup, | k(t,s) | and K is positive constant.

Definition 5. By a weak solution to (3) we mean a function x € C[I, E] which
satisfies the integral equation (3). This is equivalent to finding =z € C[I, E] with

1
p(x(t) = ¢la(t) +/0 k(t,s)f1(s, (P(s))) dsg(t, s)), t € IV p € E”.

New for the existence of a weak solution of (3), we have the following the-
orem.

Theorem 6. Let the assumptions (i),(ii),(iv)-(vi) and (iii)* be satisfied.
Then the Hammerstien-Stieltjes functional integral equation (3) has at least
one weak solution x € C[I, E].
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Proof. Let
f(t,s,2(¥(s))) = k(L s) fr(s, z(1(s))).

Then from the assumption (iii)*, we find that the assumptions of Theorem 2
are satisfied and result follows. O

4. The weak maximal and weak minimal solutions

Now we give the following definition.

Definition 7. Let ¢(t) be a weak solution of (2) Then ¢(t) is said to be
a weak maximal solution of (2) if every weak solution x(t) of (2) satisfies the
inequality

pla(t) <elq(t), Ve E

A weak minimal solution s(¢) can be defined by similar way by reversing the
above inequality, i.e.

e(x(t)) > p(s(t), Ve E".
In this section, we assume that f satisfies the following assumption:
(4) for any x,y € E satisfying ¢(z(t)) < ¢(y(t)), Ve € E* implies that

p(f(t,s,2(1(s)) < @(f(t,s,5(1(s))))-

Lemma 1. Let f(t, s, z) satisfy assumptions of Theorem 2 and let x(t),y(t) €
C[I, E] on I satisfy

1
p(x(t) < p(a(t)) +/0 o(f(t,s,2(¥(s))))dsg(t, s)

1
e(y(t)) = e(alt)) +/0 o(f(t,s,2((s))))dsg(t, s)

for all p € E*, where one of them is strict.
If (f(t,s,x)) satisfies assumption (4), then

p(a(t)) < e(y(t)).
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Proof.  Let the conclusion (4) be false, then there exists ¢; such that

p(z(t1)) = ¢(y(t1)), t1>0
and

p(z(t) < ply(t), 0<t <t
Since (f(t,s,z)) satisfies assumption (4), we get

1
pa(t) < )+ /0 o(f(t1, 5, 2(6(5)))dag(t, 5
1
< )+ /0 (F(t1, 5, y(1(s))) deg(t,s)
< oy

Which contradicts the fact that ¢(z(t1)) = @(y(t1)), then
p(a(t) < e(y()).
U

Theorem 8. Let the assumptions of Theorem 2 be satisfied. If f(t,x)
satisfies assumption (4), then there exist a weak maximal and weak minimal
solutions of (2).

Proof. First, we shall prove the existence of the weak maximal solution of
(2). Let € > 0 be given. Now cons1der the integral equation

/ [t 5,2:(0(5))) dsgt,5), n
where
fe(t,s,2e(Y(s))) = f(t,5,2(¥(s))) + e

Clearly the function fc(t,s,zc) satisfies the conditions (1)-(3) of Theorem 2,
and
[fe(t, s,z )| < m(t, s) +bl|z|| + € =m(t, 5) + ba|z]].

Therefore equation (4) has a weak solution z. € C[I, E] according to Theorem
2. Let €1 and €3 be such that 0 < e < €1 < €. Then,

1
rey(t) = a(t) + /0 for (b, 5,2, ((5))) dagl(t, 5)

1
rey(t) = a(t) + / (F(t 5,20 (0(s))) + 1) dug(t, 5)

0
implies that
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1
p(2e (1) > plalt)) +/O p(f(t 5,26, (1(5)))) + €2 dsg(t, ), ()

1
(e (1)) = p(alt)) + /O o(f(t.5, 70 (0(5) + €2 deglts).  (6)

Using Lemma 1, then (5) and (6) imply

p(re, (1) < p(x, (1), t€]0,1].
As shown before in the proof of Theorem 2, the family of functions x(t) defined
by (4) is uniformly bounded and of strongly equicontinuous functions. Hence
by the Arzela-Ascoli Theorem, there exists a decreasing sequence €, such that
e — 0 as n — oo and lim,,_,~ 2, (t) exists uniformly in [0, 1] and denote this

limit by ¢(t). From the weakly continuity of the function f., and applying the
Lebesgue Dominated Convergence Theorem, we get
1

alt) = Jim e, (6) = alt) + [ (Ft5.0(0(9) dugt.s).

which proves that ¢(t) as a solution of (2).

Finally, we shall show that ¢(¢) is the weak maximal solution of (2). To do
this, let x(t) be any weak solution of (2). Then,

1
plet) = @(a(t))Jr/O(w(f(tas,xe(w(S))))Jre) dsg(t, 5)

1
> plalt) + /0 o(F (5,2 (6(5)))) dagl(t, ),

and .
o(x(t)) = olalt)) + / (o(f (5, 2(0())) dug(t,5),

and applying Lemma 1, we get

p(ae(t)) > p(x(t))-
From the uniqueness of the maximal solution (see [10]), it is clear that z.(t)
tends to ¢(t) uniformly in ¢ € [0,1] as € — 0.

By similar way as above, we can prove that s(t) is the weak minimal solution
of (2).

The weak maximal and minimal solutions of (3) can be defined in the same
fashion as done above. U

Now, the function f; is assumed to satisfy the following assumption:
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(4*) for any z,y € F satisfying p(z(t)) < ¢(y(t)), Ve € E* implies that
e(f1(s,z(¥(s)))) < p(fi(s,y((s))))-

Now the following lemma can be proved.

Lemma 2. Let fi(t,x),k(t,s) satisfy the assumptions of Theorem 3 and
let z(t),y(t) € C[I, E] on I satisfy

1
p(x(t)) < @(a(t)) +/O k(t, s)(f1(s, 2((s))))dsg(t, ),

1
e(y(t) = ¢(a(t)) +/O k(t, s)o(f1(s, 2(¥(s))))dsg(t, 5),

where one of these is strict. If fi(t,z) satisfies assumption (4*). Then,

p(a(t)) < e(y(t)).

Theorem 9. Let the assumptions of Theorem 3 be satisfied. If fi(t,x)
satisfies assumption (4*), then there exist a weak maximal and weak minimal
solutions of (3).

Proof. First, we shall prove the existence of the weak maximal solution of
(3). Let € > 0 be given. Now consider the integral equation

1
%@—M0+Akwﬁm@%W®D%Ww% (7)
where
fle(svxﬁ(s)) = f1(57x6(¢(5))) + €.

Clearly the function fi (s, z.) satisfies the conditions (1)*,(2)* of Theorem 3,
and

[f1e(s; x|l < ma(#) +bllz]| + € = ma(t) + bal]].

Therefore equation (7) has a weak solution z. € C[I, E] according to Theorem
3. Let €1 and €3 be such that 0 < e < €1 < €. Then,

1
aﬁww@+4kwqm@wawmwwwm

1
nwww@+ﬁkwmﬁ@%W@»wn@ww,

implies that
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1
(e (1) > plalt)) +/0 k(t, s)p(f1(s, 26, (¢(5)))) + €2 dsg(t, 5),  (8)

1
(26 (1) = plalt)) +/0 k(t,s)p(fi(s, 2, (4(5))) + €2 dsg(t, s). (9)
Using Lemma 2, then (8) and (9) implies
p(re (1) < plz ), tc[01]

As shown before in the proof of Theorem 3, the family of functions z () defined
by (7) is uniformly bounded and of strongly equicontinuous functions. Hence
by the Arzela-Ascoli Theorem, there exists a decreasing sequence €, such that
€ — 0 as n — oo and lim,,_,« 7, (t) exists uniformly in [0, 1] and denote this
limit by ¢(t). From the weakly continuity of the function fi. and applying
Lebesgue Dominated Convergence The(l)rem, we get

0ft) = Jim 0, (6) = alt) + [ bl Ai(s,(0(5) dig(t.s),

which proves that ¢(t) as a solution of (3).
Finally, we shall show that ¢(¢) is the weak maximal solution of (3). To do
this, let z(t) be any weak solution of (3). Then

1
olad(t) = wmm+gkwmwﬁ@nw@m+o@mw>
1
> wam+ﬁkwﬁwﬁ@aW@»m£wﬁ

and

1
p(a(t) = ¢(a(t)) +/0 k(t,s)o(fi(s, x(1(5)))) dsg(t, ),

applying Lemma 2, we get

p(re(t)) > p(x(t))
from the uniqueness of the maximal solution (see [10]), it is clear that z(t)
tends to ¢(t) uniformly in ¢ € [0,1] as € — 0.

By similar way as done above we can prove that s(t) is the weak minimal
solution of (3). O

In what follows, we provide some examples illustrating the above obtained
results.



ON THE WEAK SOLUTIONS OF THE URYSOHN-STIELTJES... 275

Example 1. Consider the function ¢: 1 x I — R defined by the formula
g(t,s) =t3+ts, tel,

It can be easily seen that the function g(¢, s) satisfy assumptions (iv)-(vi) given
in Theorem 2. In this case, the Urysohn-Stieltjes functional integral equation
(2) has the form

1
2(t) = a(?) +/0 LE(E s, 2(6(s))) ds, € I. (10)

Therefore, the equation (10) has at least one weak solution = € C[I, E], if the
functions a, 1 and f satisfy the assumptions (i)-(iii).

Example 2. Consider the function ¢ :1 x I — R defined by the formula
(t5) = tlns forte (0,1], sel,
I\5)=19 o, fort =0, sel.

Also, the function g(t, s) satisfy assumptions (iv)-(vi) given in Theorem 2. In
this case, the Urysohn-Stieltjes functional integral equation (2) has the form

1
t
o) =a(®) + [ T f(tsali(s) ds. tel (1)
0 t+s
Therefore, the equation (11) has at least one weak solution = € C[I, E], if the

functions a,1 and f satisfy the assumptions (i)-(iii).
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