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Abstract: A survey of an approach for obtaining explicit formulae for solv-
ing local and nonlocal boundary value problems (BVPs) for some linear partial
differential equations is presented. To this end an extension of the Heaviside-
Mikusinski operational calculus is used. A multi-dimensional operational cal-
culus is constructed for each of the considered problems. The main steps of
construction of exact (closed) solutions using such operational calculi are out-
lined. It is based on a combination of the Fourier method and an extension of
the Duhamel principle to the space variables.

Program tools for numerical computation and visuali - zation of the solutions
using the computer algebra system M athematica (http://www.wolfram.com/
mathematica) are developed.
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1. Introduction

The classical operational calculus is intended mainly to solving initial value
problems both for ordinary differential equations (ODEs) and for partial differ-
ential equations (PDEs) with constant coefficients [15].
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Here we develop an extension of the Heaviside-Mikusiniski operational cal-
culus [18] for BVPs with local and nonlocal boundary conditions, in order to
find their solutions in an explicit form.

The essence of our approach is in common use of a combination of the
Fourier method and an extension of the Duhamel principle to the space vari-
able in the frames of a nonclassical two-dimensional operational calculus of
Mikusinski type.

The main features of this approach are outlined in [3]-[8], [12] as well as in
some other papers of the authors.

2. The Classical Duhamel Principle and its Analogon

Local and nonlocal BVPs for the classical equations of mathematical physics in
rectangular domains often are solved by Fourier method or some of its exten-
sions, intended for nonlocal cases.

The Duhamel principle had arisen almost simultaneously with the Fourier
method. In 1830, J.-M.-C. Duhamel published a Memoire [14], and he had
shown there that the solution of the BVP

2
% = %, u(0,t) =0, u(1,t) = ¢(t), u(xz,0) =0
could be obtained for arbitrary ¢(t), provided that we have the solution U (z, )
of the same problem, but for the special choice ¢(t) = 1. It is given by the
formula

o t
u(at) = 2 / Ut — 7)o(r)dr (1)
at Jo
in the strip 0 <z <1, 0 <t, [18].
Using the Fourier method, we can easily find

2 (=) 2 2
U(z,t) = SN L L e . 2
(x,t) =z + anl ——¢ sin nmwx (2)

It is desirable to extend the Duhamel principle to BVPs with non homogenous
initial conditions.

However, for the BVP

Up = Ugy, w(0,1) = u(m,t) =0, u(z,0) = f(x)
in the strip 0 <z <, 0<t,

there is also something like the Duhamel representation (2):

o) = [ [ — 1) — 8z +y.8) Fy)dy, (3)
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11
where 0(z,t) = o T Z:; e " cosna (4)

is the well-known #-function (see [20], p. 94). The function #(x,t) is a solution
of the heat equation, but it is not a solution of the same BVP for special choice
of f(z) since the series for 0(x,t) diverges for ¢ = 0.

Nevertheless, representation (3) could be used for evaluation of u(x,t) at
inner points of the domain 0<z<mw, 0<t.

Representation (3) could be found in many books and papers and some-
times is connected with the name of M. Gevray [20]. No other Duhamel-type
representations of this sort for solutions of linear BVPs for PDEs are known to
the authors.

3. Convolutions for Boundary Value Problems

The Duhamel principle can be extended for the space variables of a large class of
boundary value problems for linear partial differential equations in finite space
domains, in which the Fourier method can be applied. To this end we use an
approach, suggested by one of the authors [3], for extension of the operational
calculus of Heaviside-Mikusinski for functions of two variables. This approach
can be applied both to local and to non-local boundary value problems. Here
we consider BVPs for three classical equations of mathematical physics in finite
domains:

e the heat equation uy = u,, + f(z,t)
e the wave equation uy = Uz, + f(x,t)

e the equation of vibrations of a supported beam
Uy = —Upgzz T f(xa t)-

For solving such problems we need some extensions of the direct approach
of Mikusinski, using new convolutions.

To this end, we consider two types of convolutions, intended to operational
calculi for functions of one variable. We will combine them in a convolution for
functions of two variables, in order to build operational calculi for functions of
two variables.

3.1. Convolutions for the Differentiation Operator

The basic BVP for the differentiation operator d/dt in the space C'[0,00) of
the continuous functions f(¢), 0 <t < oo is determined by an arbitrary linear
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functional y on C'[0,00). It looks as follows:
y' = f(t), x(y) =0. ()

In order the solution y to exist it is necessary to assume x{1} # 0. For the
simplicity sake, we take y{1} = 1. Then the solution y = [ f(t) could be named
a generalized integration operafor. It has the form

Lf(t) = / ) dr = xo { / f(r)dr}. (6)

0 0

It is shown in [3] that the operation
t
(f*9)(t) = xo{ / f(t— o +7)g(0) do}, (7)

is a bilinear, commutative and associative operation such that
If ={1}=f.

However, this convolution is used in [10] for solving nonlocal Cauchy boundary-

value problems in the non-resonance case. The resonance case is considered in
[11].

3.2. Convolutions for the Square of
the Differentiation Operator d?/dxz?

Let us consider the space C'[0,a] of the continuous functions on [0,a]. The
simplest nonlocal BVP for d?/dx? in C [0, a] is given by

y" = f(x), y(0)=0, ®{y} =0,

where @ is a linear functional on C![0,a]. In order it to have a solution, it is
necessary to assume ®{z} # 0. For simplicity sake, we assume that ®{z} = 1.
Its solution y = L f(z) has the explicit form

Li@) = [ (=) feds el | “(e— ) Fon)dny. (®)
In [3] it is proven that the operation
(@) =—goc { [Cnaman)}. )
h(z,m) =

[ #ava-09@dc~ [ -2 ca¢hsent -2 - O ce

with

is a bilinear, commutative and associative operation such that

Lf(x) =A{x}* f.
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Theorem 1. The operation
{ula, )} * {o(, )} = 3 dexe{h(z, 66, 7)) (10)

with h(z,t;€,7) // (x4+&—nt+717—0)v(n,o)dodny

- [t~ 7 =)ol s o~ €~ ] ot

and with the functional @5 =do fo is a convolution of the operators L and [ in
C(A) (where A = (0,a]x[0,00)), for which Llu = {x}*u. The operatorslu =

{1} (i) u(z,t) and Lu = {x} (i) u(zx,t) are multipliers of the corresponding
convolution algebra [17].

This theorem gives us an operation (u * v)(z,t) in C(A), which is a convo-
lution of each of both operators [ and L.

3.3. Construction of an Operational Calculus for
the Operators L and [l in C((0,a] X [0,00))

Consider the ring 9t of the multipliers of the convolution algebra [C'(A), %],
where A = [0, a] x [0, 00).

M
Denote by M the ring of the fractions N where M € 9, N € M, N being

non-divisor of 0 in 9. Such fractions are called multipliers fractions.
In M there can be embedded both the ring (C, *) and the numerical field
t
(IR or @) and also, the convolution algebras (C[0, a], (i)) and (C[0, o), (*)).
Of course, M also is a part of M, since M = T where [ is the identity

operator. Hereafter, we will denote I simply by 1.

Let f = {f(z)} be a function of the variable = only and ¢ = {¢(t)} is a
function of the variable ¢ only, but considered as elements of C.

The operators

[f]t:qu(i)u

and (t)
[l cur— @ x v

are said to be numerical operators with respect to ¢t and z respectively. In these

1

notations we have L = [z], and [ = [1],. They belongs to M. We denote s = 7
1

ds =—.
and S i
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3.4. Basic Formulae of the Operational Calculus for [ and L

These are ou
o = su— [ fule ), (11)
and 52u

where the indices ¢t and x mean that the corresponding functions of ¢ and = are
considered as “partial” numerical operators.

ou
These formulae express the relation between the partial derivatives — and

ot
0%u 1 1
92 and the products su and Su (s = 7 S = Z)

4. Duhamel-Type Representations of Solutions of BVP

In order to illustrate the application of the operational calculus, briefly de-
scribed above, let us consider the following class of BVP:

Up = Ugy + F(z,t), 0 < <a,t>0
u(O,t) =0, (I)g{u(f,t)} =0
x-{u(z, 1)} = f(@),

where ® and y are linear functionals respectively in C*[0, a] and C[0, 0o].
Using the main formulae (11), we reduce the problem to the single equation:

(s =Shu = [f(@)}], +{F(z, 1)}

Assuming that s — S is not a divisor of 0 (this assumption is equivalent to the
requirement for uniqueness of the solution), we can write the following form of

the solution in M:

1 1
u= —< @)+ —5{F@0). (12)

Consider the partial solution Q(z,t) of the equation for F(z,t) = 0 and
f(x) = . This solution is an algebraic object and it has the form:

1
R .
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Theorem 2. If Q(x,t) is a function in C(A), the problem

Ut = Ugy, U(O,t) =0, QE{U(fvt)} =0, XT{u(va)} = f(CC)

with f(0) = 0, ®{f} = 0 and f € C?[0,a] has a classical solution u(x,t) of
the form 52 (x)
u(z,t) = {Q(x,t) * f(:):)} (14)

a2

The proof is given in [2].

Having in mind this theorem, the formulae (11), (14) and also the forms of
1, P¢ and x,, we can obtain a representation of the solution of a given BVP
for the heat equation.

In a similar way we can obtain formulae for the solutions of BVP for the
wave equation and for the equation of a supported beam.

Let us note that a direct approach to the construction of operational calculi
connected with linear nonlocal boundary value problems for a large class of
linear evolution equations with several space variables and one time variable is
proposed in [13].

5. BVPs for Equations of Mathematical Physics

We consider local and non-local BVPs for the heat equation, for the wave
equation and for the equation of a supported beam. In all problems the partial
solutions are denoted by (2 and they are obtained in a form of series, separately
for every problem.

5.1. Heat Equation

A. Local BVP
Consider the BVP:

U = Uy, 0<z<1, 120, u(0,t) =0, u(l,t) =0, u(z,0) = f(z).

Using Theorem 2 and also (10) and (14), for ®¢ {u(§,t)} = u(1,t) we obtain
the following form of the solution:

1
we) = [00-s-en-Q0te-enlfoE 09
where Qz,t) = Z(—l)” exp(—n?mt) cos nmx

n=1
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is a solution of the problem for f(z) = =x.
B. Non-local BVP

The so-called “Samarskii-Ionkin problem” (see [16]) has the form:

1
Ut = Ugy, u(0,t) =0, / u(z,7)dr =0, u(z,0) = f(x).
0

This is a BVP with ®¢{u(,t)} = /01 f(&)de.

After simplification of (14), the following representation is obtained (see

[3]): . .
uet) = =2 [ Q- 60f©d~ [ 00 +a-60fE)
1
+ [ 00 -2 - gof(ehmmeds, (16)
where > 2 2
Qx,t) = Z {—2x cos 2nmx + Smntsin 2nwa} e ML
n=1
5.2. String Equation
A. Local BVP

Consider the BVP:
U = Ugy + F(2,t), 0<z<a, 0<t<oo,
u(0,t) =0, u(a,t) =0
u(z,0) = f(z), w(z,0) = g(z).

The following representation is obtained for f(z) = 0:
u(z,t) =
1

1
_%/x Q(1+x—§)g/(§)d§+%/ Q(l—x—f)g/ﬂﬂ)df’ (17)

—x

2 [o@)
where Qz,t) = = Z((—l)”_l/nQ)sinmrx sinnmt

is a solution of the problem, but for the special choice g(x) = =.
B. Non-local BVPs
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Consider the following BVP for the string equation:
U = Upz, 0< <1, 0<t <00

u(0,1) =0, [ u(&,t)dg =0
u(z,0) = f(z), w(z,0) = g(z).
S. Beilin (see [1]) considers problems of this type and states conditions for

the existence and uniqueness of the solution. We derived a formula, convenient
for numerical computation of the solution.

Case 1. f(x)=0, g(x) #0.
We use the solution Q(z,t) for g(z) = 23/6 — /12 and f(z) = 0; we have:

Oz, t) = Z {x cos(2nmx) sin(2nmt)

4n3 73
n=1
tcos(2nmt) 3sin(2nwt)) .
+< P oy g sin2nmzx) .

The solution u(z,t) has the form (see [19])
2

w(w,t) = % {Q(m,t) @ g(x)}

and after its simplification the following representation is derived:

ula, 1) = —2 /0 00— .0)g (€)de (18)
1

1
_ / Qu(1 42— & 1)g (E)dE + / Qa1 — & — £,1)g'(1€])de.

Case 2. f(z)# 0 and g(x) = 0.
The representation of the solution now has the form (see [19])
0 0 (z)

For the purposes of simplification otf this representation we introduce

. t) = /0 Q. (z,7) dr,

where Q(z,t) is a solution of the problem under consideration for the special
choice f(r) = 2%/6 —x/12 and g(x) = 0,

o0 . 9

n?2 2

n=1

t cos(nmt) sin(nnt) sin(2nmx) sin(nwt)? sin(2nw )
B n? 72 * n3 73 ’

The following representation of u(z,t) is derived:
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u(zx,t) = (19)
_2/ oz — &) F(6) de — / J(1+z—&t) f(€)dE

1
+/ Sgnxﬁx(l — L= f,t) f//(g) d§ - 20(17t) f//(x) + f(x)

—x

5.3. Equation of a Free Supported Beam

A. Local BVPs

Consider the following problem for the equation of a free supported beam (see

[15)): , )
Ou_ 0§ cpcl0<t<oo
oz~ oat ’ ’

u(0,t) =0, ugz(0,t) =0, u(l,t) =0, uzz(1,8) =0

u(z,0) = f(z), ui(x,0) = g(x).

For the case f(x) = 0 we obtain:

1
u(et) = =5 [ Q14— 09 (20)

1
%/ Qu(1 -z — £, 1)g(|€]) sgn € de,

5 o
where = Z )"~ /n?) sin(nm)?t cos nr.

B. Non-local BVPs
Consider the problem
0%u *u
ﬁz—w, O<zr<l,0<t < o0,

u(0,t) =0, uge(0,8) =0
(6 )dE = 0, up(1t) — ug(0.8) = 0
ulw,0) = £(@), uilw,0) = g().
Case 1. f(z) =0, g(z) # 0.
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The solution u(z,t) in this case has the form (see [19])
0? (x)
u(x,t) = 922 {Q(ﬂc,t) x f(z) .
After some simplifications an explicit representation is obtained:
e t) = =2 [ (o — €096 (21)
1

1
- / Qu(1+ 2 — £,1)g' (E)dE + / (1 — 2 — £, 1)g/(1€])de,

—x

where Qu(w,t) =
i cos(2nmx) (8n* w2t cos(4n? 7 t) — 3 sin(4n? 7% t))
8nt rt
n=1
_ zsin(4 n?mw?t) sin(2n7rx))
4n3 3 ’

Case 2. f(z)#0, g(x) =0.

The following representation is obtained after simplification applied in a
way, similar to those in Case 2 for the string equation (for more details see

[19]):
u(z,t) = (22)

1

2/0 Qe — .1 f’”(&)d£+/x Qua(1+ 2 — €, 0) /7 (€)dE
1
/ Qua(1 — 2 — £,8) FV(1€])sign (E)dE + 27 (€) (20, 1)
—0,(1,1) + f(x),

where - { z cos(2nmz)sin(2n? 72 t)?

Loa(2,1) = Ant i

(4n?n?t cos(2n® w?t) — 3 sin(2n? 7% t)) sin(2n? 72 t) sin(27 x)
4nT 7o

_ sin(2 n? 2 t)2 sin(2nm x)
4nd 7o '



318 I. Dimovski, M. Spiridonova

{{0., 0.,0.,0.,0.,0.,0.,0.,0.,0.,0.},

{0., 0.122599, 0.157754, 0.0669366, -0.115165, -0.293893, -0.360363, -0.248572,
0.0238813, 0.352929, 0.587785}, {0., 0.157754, 0.189536, 0.0425892,

-0.226956, -0.475528, -0.542465, -0.336482, 0.104357, 0.611667, 0.951057},

{0., 0.0669366, 0.0425892, -0.104357, -0.317774, -0.475528,

-0.451647, -0.189536, 0.251303, 0.702484, 0.951057},

{0., -0.115165, -0.226956, -0.317774, -0.352929, -0.293893,
-0.122599, 0.136138, 0.408592, 0.590693, 0.587785},

{0., -0.293893, -0.475528, -0.475528, -0.293893, 3.33067 x107'¢,
0.293893, 0.475528, 0.475528, 0.293893, 2.77556 x107'°},

{0., -0.360363, -0.542465, -0.451647, -0.122599, 0.293893, 0.598127, 0.633283,
0.360829, -0.115165, -0.587785}, {0., -0.248572, -0.336482, -0.189536,
0.136138, 0.475528, 0.633283, 0.483428, 0.0425892, -0.520849, -0.951057 },

{0., 0.0238813, 0.104357, 0.251303, 0.408592, 0.475528, 0.360829, 0.0425892,
-0.39825, -0.793302, -0.951057}, {0., 0.352929, 0.611667, 0.702484,

0.590693, 0.293893, -0.115165, -0.520849, -0.793302, -0.828458, -0.587785},

{0., 0.587785, 0.951057, 0.951057, 0.587785, 2.22045 x 10" '¢,

-0.587785, -0.951057, -0.951057, -0.587785, -5.28466 x10 '*}}

Figure 1: Table of numerical values of the solution

6. Program Packages for the Considered BVPs

The representations (15)—(22) of the solutions of BVPs considered above, are
convenient for numerical computation of an arbitrary number of values of the
solutions. A visualization of each solution can be made as well.

For practical application of these capabilities 3 program packages for the
computer algebra system Mathematica were developed (for the 3 types of the
considered equations). In each of these packages functions for solving local and
nonlocal BVPs are implemented.

After loading the chosen package, a call to the respective function has to
be performed, for example:

DSolveOCStringNonll[g, u, z,t,{z,0,1,0.1}, {¢,0,1,0.1}, 5]
for solving a nonlocal BVP for the string equation, Case 1.

As a result, a table of numerical values of the solution in the given intervals
is returned, followed by visualization of the boundary function and the solution
(see Figures 1, 2 and 3, respectively).

In the included illustrative example a nonlocal BVP for the string equation,

3
Case 1, is solved for g(x) = 27z cos 2z + = sin 27z and for degree of trunca-

tion of the series representing the partial solution Q(z,t), equal to 5 (the last
parameter of the call stands for that).
For the cases when the exact solution is known, a comparison of its values
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Figure 2: Function g(z)

Figure 3: Solution wu(z,t)

in a set of points with the values of “our” solution in the same points could be
easily made. A number of experiments were made and errors of computation
of order 107 — 10~!3 were found.

As far as we know, Mathematica system is not able to solve nonlocal BVPs.



320 I. Dimovski, M. Spiridonova

7. Resonance Vibrations of String and Beam under Integral
Boundary Conditions

As an application of our approach to finding exact solutions of BVPs we study
a real problem.

The Tacoma Narrows bridge collapse on November 7, 1940 still had not
obtained unanimous explanation. The physical phenomenon resonance is often
pointed out as a possible explanation of the bridge failure. Many authors of
studies of this disaster reject such an explanation.

If we consider the bridge as linear elastic system subjected to local boundary
value conditions, it is not possible the resonance phenomenon to occur. Nev-
ertheless, considering such a system as subjected to nonlocal boundary value
condition of energetic type (integral boundary-value condition), there always
occur resonances on all frequencies.

Let us consider again the linear nonlocal boundary value problems for
the equations of a vibrating string and for a free supported beam and their
Duhamel-type representations of the solutions, derived by the presented ap-
proach:

Pu  *u ig = —iqi
W = W ot or
O<zr<1l,0<t <

1
/ w(é, t)dé = 0,
0

B Uz (1,t) — ug(0,1) =0
t\Ts ) u(z,0) = f(x), u(x,0) = g(x).

O<zr<l,0<t <

1
u(0,t) = 0,/0 u(&,t)dE =0

For simplicity sake the cases when f(x) = 0, g(z) # 0 for the string equation
and f(z) # 0, g(z) = 0 for the beam equation are considered. The representa-
tions of their solutions are as follows:

x 1
u(et) = —2 /O Q2 — £.1)g'(€)dE — / Qu(1 42— &,1)g(€)de

1
+ / Qa1 — 2 — &,0)g([E)de,

—T

for the string equation, and
1

(e, t) = 2 /0 Qo — &,0) 17 (E)dE + / Qa1+ — £,0) 7 (€)de
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1
_/ Qxx(l - T 57 t)fiv(|§|)8ign(f)df + 2fw(§)(Qx(Ov t)

—x

_Qx(lv t)) + f(x)a

for the beam equation (formulae (18) and (22), respectively).
Analyzing all components of these representations, we can conclude that
both formulae have the following general form:

u(z,t) = uy(x,t) + tug(z,t),

where uj(x,t) and us(z,t) are periodic with respect to ¢ and hence bounded
for fixed x. The resonance effect is due to the aperiodic term tug(z,t). When
its absolute value exceeds some fixed quantity, a demolition occurs.

Similar considerations are presented in more details in [9]. It is shown there
that under a quite simple integral boundary condition, resonance inevitably
occurs even in the case of absence of external forces. Conservation of the integral
of displacement in time has a clear physical meaning: conservation of the bridge
potential energy in the course of vibration.

By this phenomenon, we explain resonance vibration of the Tacoma bridge.
This explanation is also applicable to the resonance vibration observed on the
Volgograd bridge in May 2010, so that it was even closed for traffic for some
time [9].

However, we do not discuss the prevention of such resonance vibration. The
design issues need special investigation.
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