LOCAL-IN-TIME SOLVABILITY OF TARGET DETECTION
MODEL IN MOLECULAR COMMUNICATION NETWORK

Abstract

This paper is concerned with a model of the target detection that is actively discussed in the study of molecular communication network these days. We first verify the solvability of the stationary problem, and then the existence of a strong local-in-time solution to the non-stationary problem in the Sobolev-Slobodetski space.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 3
Year: 2018

DOI: 10.12732/ijam.v31i3.10

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] A. Einolghozati, M. Sardari, A. Beirami and F. Fekri, Capacity of discrete molecular diffusion channels, In: Proc. IEEE International Symposium on Information Theory (2011).
  2. [2] A. Einolghozati, M. Sardari and F. Fekri, Capacity of diffusion-based molecular communication with ligand receptors, In: Proc. IEEE Information Theory Workshop (2011).
  3. [3] T. Hillen and A. P. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci., 27 (2004), 1783-1801.
  4. [4] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I., Jahresber. Dtsch. Math.-Verein., 105 (2003), 103-165.
  5. [5] S. Iwasaki, Convergence of solutions to simplified self-organizing targetdetection model, Sci. Math. Jpnonicae. e-2016 (2016).
  6. [6] S. Iwasaki and T. Bak, A mathematical model of non-diffusion-based mobile molecular communication networks, IEEE Comm. Lettr., 65 (2017), 203-230.
  7. [7] K. Kang and T. Kolokolnikov, The stability and dynamics of a spike in the 1D Keller-Segel model, IMA J. Appl. Math., 72 (2007), 140-162.
  8. [8] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234.
  9. [9] O. A. Lady˘zenskaja, V. A. Solonnikov and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs 23, American Mathematical Society (1968).
  10. [10] T. Nakano, et al., Molecular Communication, Cambridge University Press, Cambridge (2013).
  11. [11] T. Nakano, et al., Performance evaluation of leader-follower-based mobile molecular communication networks for target detection applications, IEEE Trans. Comm., 65 (2017), 663-676.
  12. [12] Y. Okaie, et al. Modeling and performance evaluation of mobile bionanocensor networks for target tracking, In: Proc. IEEE ICC, (2014), 3969-3974.
  13. [13] Y. Okaie, et al. Cooperative target tracking by a mobile bionanosensor network, IEEE Trans. Nanobioscience, 13 (2014), 267-277.
  14. [14] K. Osaki and A. Yagi, A Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469.
  15. [15] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556.
  16. [16] A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of turing patterns in reaction-diffusion-ODE systems, J. Math.Biol., 74 (2017), 583-618.
  17. [17] N. Tanaka and A. Tani, Surface waves for a compressible viscous fluid, J. Math. Fluid Mech., 5 (2003), 303-363.
  18. [18] J. Wloka, Partielle Differentialgleichungen, B. G. Teubner (1982).