GLOBAL STABILITY ANALYSIS FOR LASSA
FEVER TRANSMISSION DYNAMICS WITH
OPTIMAL CONTROL APPLICATION

Abstract

A mathematical model for transmission dynamics of Lassa fever with optimal control application is presented. The existence of region where the model is epidemiologically feasible is established with respect to the use of pesticide control measure. We use personal protection control measure and basic reproduction number in linear and nonlinear Lyapunov functions together with the Lasalle's invariant principle to show that disease free and endemic equilibria are globally asymptotically stable. The existence and uniqueness of an optimality system are discussed. A characterization of the optimal control via adjoint variables is established. The possible impact of using combinations of the three controls either one at a time or two at a time or three at a time on the spread of the disease is also examined.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 3
Year: 2018

DOI: 10.12732/ijam.v31i3.11

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] J.B. McCormick, D.H.Walker, I.J. King, P.A. Webb, L.H. Elliott, S.G White, K.M. Johnson, Lassa virus hepatitis: a study of fatal Lassa fever in humans, Am. J. Trop. Med. Hyg., 35 (1986), 401-407.
  2. [2] J.D. Frame, J.M. Baldwin, D.J. Gocke, J.M. Troup, Lassa fever a new virus disease of man from West Africa, Am. J. Trop. Med. Hyg., 19 (1970), 670-676.
  3. [3] J.D.Frame, J.M. Baldwin, D.J. Gocke, J.M. Troup, Lassa fever a new virus disease of man from West Africa. I: Clinical description and pathological findings, Am. J. Trop. Med. Hyg., 19 (1970), 670-676.
  4. [4] D.H. Walker, J.B. Mccormick, K.M. Johnson, P.A. Webb, G. Komba-kano, L.H. Elliott, J,J. Gardner, Pathologic and virologic study of fatal Lassa fever in man, Am. J. Pathol. (1982), 349-356.
  5. [5] W.CWinn, D.H.Walker, The pathology of human Lassa fever, Bull. World Health Organ., 52 (1975), 535-545.
  6. [6] P.B. Jahrling, R.A. Hesse, G.A Eddy, K.M. Johnson, R.T. Callis, E.L. Stephen, Lassa virus infection of rhesus monkeys pathogenesis and treatment with ribavirin, J. Infect. Dis. (2012), 580-589.
  7. [7] M. Bawa, S. Abdulrahman, O.R. Jimoh, N.U. Adabara, Stability analysis of disease free equilibrium state for Lassa fever disease, J. of Science, Technology, Mathematics and Education, 9 (2012), 115-123.
  8. [8] R. Okuonghae, D. Okuonghae, A mathematical model for Lassa fever, J. of the Nigeria Association of the Mathematical Physics, 10 (2006), 457-464.
  9. [9] T.O. James, S. Abdulrahman, S. Akinyemi, N.I. Akinwande, Dynamics transmission of Lassa fever, International J. of Innovation and Research in Educational Sciences (2012), 2349-5219.
  10. [10] M.O. Onuorah, N.I. Akinwande, M.O. Nasir, M.S. Ojo, Sensitivity analysis of Lassa fever model, International J. of Mathematics and Statistic Studies, 4 (2016), 30-49.
  11. [11] N.E. Yun, D.H. Wlker, Pathogenesis of Lassa fever, www.mdpi.com/journal/viruses, 4 (1999), 2031-2048.
  12. [12] CDC, Lassa fever Fact Sheet, Available online: http:www.cdc.gov (2012).
  13. [13] W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control , Springer, New York (1975).
  14. [14] L.S. Pontryagin , V.T. Boltyanskii, R.V. Gamkrelidze, E.F. Mishcheuko, The Mathematical Theory of Optimal Processes, Class. Sov. Math., Gordon and Breach Science Publishers, New York (1986).
  15. [15] H.R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Math. 23 (2002), 199-213.
  16. [16] D. Kirschner, S. Lenhart, S. Serbin, Optimal Control of the Chemotherapy of HIV, J. Math. Biol., 35 (1997), 775-792.
  17. [17] S.K. Helena, T.M. Teresa, F.M. Delfim, Optimal Control and Numerical Software: An Overview, System Theory Perspective, Applications and Developments, NOVA Sci. Publ. (2014).