International Journal of Applied Mathematics

Volume 31 No. 3 2018, 349-357

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version)

doi: http://dx.doi.org/10.12732/ijam.v31i3.4

ON SATURATION ORDER OF FUNCTIONS OF SOME VARIABLES BY SINGULAR INTEGRALS

Ali M. Musayev

Azerbaijan State Oil and Industry University, Azadlig av. 20, AZ 1601, Baku, AZERBAIJAN

Abstract: In the paper we consider approximation of functions $f(x) \in L^p(R_n)$, by α -singular integrals, determine approximation order and saturation class.

AMS Subject Classification: 41A35, 42A38, 42B20

Key Words: singular integrals, one 0-dimensional kernels, Fourier transformation, Fejer operator

1. Introduction

Let R_n be n dimensional Euclidean space and $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$, $t = (t_1, t_2, ..., t_n)$, $K_{\lambda}(t) = \prod_{l=1}^{n} K_l$, $\lambda_l(t_l)$, where $K_{l,\lambda_l}(t_l)$ ($t_l \in R_1$, $\lambda_l > 0$, $1 \le l \le n$) are one-dimensional kernels satisfying the following conditions:

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} K_{l,\lambda_l}(t_l) dt_l = 1, \quad ||K_{l,\lambda_l}(t_l)||_{L(R_1)} \le M_l < \infty,$$

$$\lim_{\lambda_l \to \infty} \int_{|t_l| \le \delta} |K_{l,\lambda_l}(t_l)| dt_l = 0 \tag{1}$$

for every $1 \le l \le n$.

Received: March 18, 2018

© 2018 Academic Publications

Consider for every $1 \leq l \leq n$, the α -singular integral of the general form

$$Q_{l,\lambda_{l}}^{(\alpha)}(f,x) = \frac{1}{(\sqrt{2\pi})^{n}} \int_{R_{n}} \left\{ \sum_{s_{1},\dots,s_{n}=1}^{\infty} \left[\prod_{l=1}^{n} (-1)^{s_{l}-1} \begin{pmatrix} \alpha \\ s_{l} \end{pmatrix} \right] \times f(x_{1} - s_{1}t_{1}, \dots, x_{n} - s_{n}t_{n}) \right\} \left[\prod_{l=1}^{n} K_{l,\lambda_{l}}(t_{l}) \right] dt_{1} \dots dt_{n},$$
(2)

where $\alpha > 0$ is any real number, and one-dimensional kernels satisfy conditions (1).

Note that if $f(x) \in L^p(R_n)$ $(1 \le p < \infty)$ and the kernel $K_{l,\lambda_l}(t_l)$ satisfies conditions (1), then singular integral (2) exists almost everywhere on R_n and the following relations are valid:

a)
$$\|Q_{l,\lambda_l}^{(\alpha)}(f,x)\|_{L^p(R_n)} \le C_2 \|f(x)\|_{L^p(R_n)} \cdot \prod_{l=1}^n \|K_{l,\lambda_l}(t_l)\|_{L(R_1)};$$

b)
$$\lim_{\lambda_1 \to \infty} \left\| Q_{l,\lambda_l}^{(\alpha)}(f,x) - f(x) \right\|_{L^p(R_n)} = 0;$$

$$\lambda_n \to \infty$$

$$\text{c)} \lim_{\lambda_{\mu} \to \infty} \left\| Q_{l, \lambda_{l}}^{(\alpha)}(f, \, x) - f(x) \right\|_{L^{p}(R_{n})} = \left\| Q_{l, \lambda_{l}}^{(\alpha)}(f, \, x) - f(x) \right\|_{L^{p}(R_{n})}$$
 for every $1 \leq \mu \leq n$ and $\lim_{\lambda_{\mu} \to \infty}$ means that $\lambda_{\mu} \to \infty$ for every $1 \leq \mu \leq n \ (\mu \neq l)$;

$$\|f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)\|_{L^p(R_n)} \leq \sum_{\mu=1}^{n-1} \left\{ \sum_{S_1,\dots,S_n=1}^{\infty} \left[\prod_{l=\mu+1}^n {\alpha \choose s_l} \right] \right\}$$

$$\times \left[\prod_{l=\mu+1}^n K_{l,\lambda_l}(t_l) \right]_{L(R_1)} + \|f(x) - Q_{n,\lambda_n}^{(\alpha)}(f,x)\|_{L^p(R_n)}.$$

In the sequel, we will assume

$$G_{l,\lambda_l}^{(\alpha)}(u_l) = \sum_{S_l=1}^{\infty} (-1)^{s_l-1} \begin{pmatrix} \alpha \\ s_l \end{pmatrix} K_{l,\lambda_l}^{\wedge}(u_l s_l)$$

at $\lambda_l > 0$ for every $1 \leq l \leq n$, where $K_{l,\lambda_l}^{\wedge}(u_l)$ is Fourier transformation of the functions $K_{l,\lambda_l}(t_l)$.

Denote by F the set of all infinitely differentiable functions with a compact support. Introduce the class of functions

$$M_F^l(\psi) \equiv \{\psi(x) \in F, \ \eta_l(u_l)\psi^{\wedge}(u)\} = r_{\psi}^{\wedge}(u)$$

for some $r_{\psi}(x) \in F$, $\eta_l(u_l) \neq 0$, $1 \leq l \leq n$.

Theorem 1. Let $f(x) \in L^p(R_n)$ $(1 \le p < \infty)$ and one-dimensional kernels $K_{l,\lambda_l}(t_l)$ $(t_l \in R_1, \ \lambda_l > 0, \ l = \overline{1, n})$ of singular integrals (2) be such that the function

$$\beta_{\lambda_l}^{(\alpha)}(u_l) = \frac{1 - G_{l,\lambda_l}^{(\alpha)}(u_l)}{\tau_l(\lambda_l)\eta_l(u_l)} \quad (\tau_l(\lambda_l) > 0, \quad \lim_{\lambda_l \to 0} \tau_l(\lambda_l) = 0)$$

be Fourier-Stieltjes transformation of some function

$$\mu_{\lambda}^{(\alpha)}(t) \in NBV(-\infty; +\infty)$$

(i.e.
$$\frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} d\mu_{\lambda_l}^{(\alpha)}(t) = 1$$
 and $\int_{-\infty}^{\delta} + \int_{\delta}^{+\infty} \left| d\mu_{\lambda_l}^{(\alpha)}(t) \right| \to 0$ as $\lambda_l \to \infty$, $1 \le l \le n$).

I. if

$$\left\| f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x) \right\|_{L^p(R_n)} = O\left(\sum_{l=1}^n \tau_l(\lambda_l)\right)$$
 (3)

as $\lambda \to \infty$, then f(x) = 0 almost everywhere on R_n ;

II. The following relations are equivalent:

A)

$$\left\| f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x) \right\|_{L^p(R_n)} = O\left(\sum_{l=1}^n \tau_l(\lambda_l)\right)$$
 (4)

as $\lambda \to \infty$ (this means that $\lambda_l \to \infty$ for every $1 \le l \le n$ separately);

B) there exist a bounded measure v on R_n and the function $l(x) \in L^p(R_n)$ such that for every $\psi(x) \in M_F^l(\psi)$ the following relation is valid

$$\int_{R_n} r_{\psi}(x) f(x) dx = \begin{cases} \int_{R_n} \psi(x) d\nu(x) & \text{for } p = 1, \\ \int_{R_n} \psi(x) l(x) & \text{for } 1 (5)$$

Proof. Let us consider the case 1 .

I. According to c) we have

$$\|f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)\|_{L^p(R_n)} = O \ (\tau_l(\lambda_l)) \ (1 \le l \le n),$$
 (6)

as $\lambda_l \to \infty$. Then for any function $\psi(x) \in F$ we have

$$\lim_{\lambda_l \to \infty} \int_{R_n} \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x)}{\tau_l(\lambda_l)} \psi(x) dx = O \quad (1 \le l \le n).$$
 (7)

As the singular integral (2) is a convolution type integral, we find

$$\int_{R_n} \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)}{\tau_l(\lambda_l)} \psi(x) dx = \int_{R_n} \frac{\varphi(x) - Q_{l,\lambda_l}^{(\alpha)}(\psi,x)}{\tau_l(\lambda_l)} f(x) dx \tag{8}$$

for every $\psi(x) \in F$.

Furthermore, from $\psi(x) \in M_F^l(\psi)$ and theorem on convolution of Fourier transformation, we have

$$\left[\frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x)}{\tau_l(\lambda_l)}\right]^{\wedge}(u) = \frac{1 - Q_{l,\lambda_l}^{(\alpha)}(u_l)}{\tau_l(\lambda_l)}\psi^{\wedge}(u)$$

$$= \left[\mu_{\lambda_l}^{(\alpha)}(t_l)\right]^{\vee}(u_l)r_{\psi}^{\wedge}(u) = \left[\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} r_{\psi}(x - t_l)d\mu_{\lambda_l}^{(\alpha)}(t_l)\right]^{\wedge}(u).$$

Hence by the uniqueness of the Fourier transformation, we find:

$$\frac{\psi(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x)}{\tau_l(\lambda_l)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} r_{\psi}(x - t_l) d\mu_{\lambda_l}^{(\alpha)}(t_l).$$

From the last equality it follows that

$$\left\| \frac{\psi(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)}{\tau_l(\lambda_l)} - r_{\psi}(x) \right\|_{L^p(R_n)}$$

$$\leq \frac{1}{\sqrt{2\pi}} \left\| r_{\psi}(x - t_l) - r_{\psi}(x) \right\|_{L^p(R_n)} d\mu_{\lambda_l}^{(\alpha)}(t_l) \to 0$$

as $\lambda_l \to \infty \ (1 \le l \le n)$.

Hence we have

$$\lim_{\lambda_l \to \infty} \int_{R_n} \frac{\psi(x) - Q_{l,\lambda_l}^{(\alpha)}(\psi, x)}{\tau_l(\lambda_l)} f(x) d(x) = \int_{R_n} r_{\psi}(x) f(x) dx$$
 (9)

for $f(x) \in L^p(R_n)$.

Therefore by (7) and (8),

$$\int_{R_n} r_{\psi}(x)f(x)dx = 0$$

for $r_{\psi}(x) \in F$. Hence we conclude, that f(x) = 0 almost everywhere on R_n . II. A) \Rightarrow B). Taking into account c), from (4) we get

$$\left\| f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x) \right\|_{L^p(R_n)} = O \quad (\tau_l(\lambda_l)) \quad (\lambda_l \to \infty).$$

Then by the theorem on weak compactness (see [4], p.16) there exist the function $l(x) \in L^p(R_n)$ and sequence of numbers l_i $\left(\lim_{l_i \to \infty} \lambda_{l_i} = \infty\right) \text{ such that}$ $\lim_{l_i \to \infty} \int_{\mathcal{D}} \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)}{\tau_l(\lambda_l)} \psi(x) d(x) = \int_{R_n} \psi(x) l(x) dx \tag{10}$

for any function $\psi(x) \in F$.

As the singular integral (2) is a convolution type integral, then taking account (9), we find

$$\lim_{\lambda_l \to \infty} \int_{R_n} \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)}{\tau_l(\lambda_l)} \psi(x) d(x)$$

$$= \lim_{\lambda_l \to \infty} \int_{R_n} \frac{\psi(x) - Q_{l,\lambda_l}^{(\alpha)}(\psi,x)}{\tau_l(\lambda_l)} f(x) dx = \int_{R_n} r_{\psi}(x) f(x) dx. \tag{11}$$

Comparing (10) and (11), we have

$$\int_{R_n} r_{\psi}(x)f(x)dx = \int_{R_n} \psi(x)l(x)dx,$$

i.e. B) is valid.

Now prove $B) \Rightarrow A$). As

$$Q_{l,\lambda_l}^{(\alpha)}(f) = \int_{R_n} \frac{\psi(x) - Q_{l,\lambda_l}^{(\alpha)}(\psi, x)}{\tau_l(\lambda_l)} f(x) dx$$
$$= \int_{R} \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x)}{\tau_l(\lambda_l)} \psi(x) dx = Q_{l,\lambda_l}^{(\alpha)}(\psi),$$

then as in the proof of relation b) \Rightarrow c) of the theorem in [7], we have

$$\frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x)}{\tau_l(\lambda_l)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} l(x + t_l) d\mu_{\lambda_l}^{(\alpha)}(t_l) \quad (1 \le l \le n),$$

or

$$\left\| \frac{f(x) - Q_{l,\lambda_l}^{(\alpha)}(f,x)}{\tau_l(\lambda_l)} - r_{\psi}(x) \right\|_{L^p(R_n)}$$

$$\leq \frac{1}{\sqrt{2\pi}} \left\| l(x) \right\|_{L^p(R_n)} \int_{-\infty}^{\infty} \left| d\mu_{\lambda_l}^{(\alpha)}(t_l) \right| \leq M.$$

That is, independently of λ_l $(1 \le l \le n)$,

$$\left\| f(x) - Q_{l,\lambda_l}^{(\alpha)}(f, x) \right\|_{L^p(R_n)} = O \quad (\tau_l(\lambda_l)) \quad (\lambda_l \to \infty).$$

Taking into account d) from the last equality we find

$$\left\| f(x) - Q_{\lambda}^{(\alpha)}(f, x) \right\|_{L^{p}(R_{n})} = O \left(\sum_{l=1}^{n} \tau_{l}(\lambda_{l}) \right)$$

as $\lambda \to \infty$, i.e. A) is valid.

The theorem has been proved for 1 . For <math>p = 1, it is proved in the same way.

Apply this theorem to Fejer's specific linear operator,

$$\sigma_{\lambda}(f, x) = \frac{1}{\prod_{l=1}^{n} (2\pi\lambda_l)} \int_{R_n} f(x-t) \prod_{l=1}^{n} \left(\frac{\sin\frac{1}{2}\lambda_l t_l}{\frac{1}{2}t_l}\right)^2 dt \tag{12}$$

in the case $1 \le p \le 2$. In this case $\alpha = 1$ and

$$K_{\lambda} = \frac{1}{\prod_{l=1}^{n} (2\pi\lambda_{l})} \prod_{l=1}^{n} \left(\frac{\sin\frac{1}{2}\lambda_{l}t_{l}}{\frac{1}{2}t_{l}} \right)^{2} = \prod_{l=1}^{n} K_{l,\lambda_{l}}(t_{l}).$$

Since

$$[K_{l,\lambda_l}(t_l)]^{\wedge}(u_l) = \begin{cases} \frac{1}{\sqrt{2\pi}} \left(1 - \frac{|u_l|}{\lambda_l}\right) & \text{for } |u_l| < \lambda_l, \\ 0 & \text{for } |u_l| \ge \lambda_l, \end{cases}$$

then

$$G_{l,\lambda_l}^{(\alpha)}(u_l) = \begin{cases} 1 - \frac{|u_l|}{\lambda_l} & \text{for } |u_l| < \lambda_l \\ 0 & \text{for } |u_l| \ge \lambda_l. \end{cases}$$

Therefore, the functions $\tau_l(\lambda_l) = \frac{1}{\lambda_l}$ and $\eta_l(u_l) = |u_l|$ satisfy the relations

$$\frac{1 - G_{l,\lambda_l}^{(\alpha)}(u_l)}{\tau_l(\lambda_l) |u_l|} = \begin{cases} 1 & \text{for } |u_l| < \lambda_l, \\ \frac{\lambda_l}{u_l} & \text{for } |u_l| \ge \lambda_l. \end{cases}$$
(13)

It is known [6] that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \sqrt{\frac{2}{\pi}} \left(\frac{\sin t_l}{t_l} - C_i t_l \right) e^{-t_l \frac{u_l}{\lambda_l}} dt_l = \begin{cases} 1 & \text{for } |u_l| < \lambda_l, \\ \frac{\lambda_l}{u_l} & \text{for } |u_l| \ge \lambda_l, \end{cases}$$
(14)

where $C_i t_l = -\int_{t_l}^{\infty} \frac{\cos u}{u} du$.

Introduce the function

$$l_{\lambda_l}(t_l) = \lambda_l \sqrt{\frac{2}{\pi}} \left(\frac{\sin t_l \lambda_l}{t_l} - C_i(t_l \lambda_l) \right).$$

Since

$$\int_{-\infty}^{\infty} |l_{\lambda_l}(t_l)| dt_l = \lambda_l \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \left| \frac{\sin t_l \lambda_l}{t_l} - C_i(t_l \lambda_l) \right| dt_l$$
$$= \sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \left| \frac{\sin t_l}{t_l} - C_i t_l \right| dt_l \le M_1 < \infty,$$

then $l_{\lambda_l}(t_l) \in L(R_n)$.

On the other hand, if by

$$\mu_{\lambda_l}(t_l) = \int_{-\infty}^{t_l} l_{\lambda_l}(u_l) du_l \ (1 \le l \le u)$$

we denote the uniformly bounded measure on R_1 , then by

$$\int_{-\infty}^{\infty} \frac{\sin t_l}{t_l} dt_l = \pi \text{ and } \int_{-\infty}^{\infty} C_i t_l dt_l = 0,$$

we get $\mu_{\lambda_l}(-\infty) = 0$, $\mu_{\lambda_l}(+\infty) = \sqrt{2\pi}$ for all values of λ_l and $[Var\mu_{\lambda_l}(t_l)]_{-\infty}^{\infty} = \int_{-\infty}^{\infty} |l_{\lambda_l}(u_l)| du_l \leq M_2 < \infty$.

The comparison of (13) and (14) shows that the function

$$\frac{1 - C_{l,\lambda_l}^{(\alpha)}(u_l)}{\tau_l(\lambda_l)\eta_l(u_l)}$$

is Fourier-Stieltes transformation of normalized function with bounded variation.

Consequently, the conditions of the theorem are satisfied for Fejer's singular integral.

Therefore we have the following

Corollary 2. Let
$$f(x) \in L^p(R_n)$$
 $(1 \le p \le 2)$. Then for the relation $\|\sigma_{\lambda}(f, x) - f(x)\|_{L^p} = O\left(\sum_{l=1}^n \frac{1}{\lambda_l}\right)$

to hold as $\lambda_l \to \infty$, it is necessary and sufficient that almost everywhere f(x) = 0 on R_n .

Corollary 3. Let
$$f(x) \in L^p(R_n)$$
 $(1 \le p \le 2)$. For the relation $\|\sigma_{\lambda}(f, x) - f(x)\|_{L^p(R_n)} = O\left(\sum_{l=1}^n \frac{1}{\lambda_l}\right)$

to hold as $\lambda_l \to \infty$, it is necessary and sufficient that $f(x) \in n_p(f)$, where

$$n_p(f) = \begin{cases} f(x) \in L(R_n)/f(x) \in B \bigcup (R_n), & \text{for } p = 1, \\ f(x) \in L^p(R_n)/f(x) \in AC_{loc}(R_1), & \text{with respect to } x_l, \\ u \frac{\partial f(x)}{\partial x_l} \in L^p(R_n), & (1 \le p \le 2, \ 1 \le l \le n). \end{cases}$$

References

- [1] H. Berens and P. Butzer, On the best approximation for approximation for singular integrals by Laplase-transform methods, *J. Approximation Theory, JSNMS*, Birkhäuser (1964), 24-42.
- [2] P. Butzer, R. Nessel, Fourier Analysis and Approximation, Vol. 1, New York and London, 1971, 553 p.
- [3] R.G. Mamedov, Mellin Transformation and Approximation Theory, Baku, Elm, 1991, 272 p.

- [4] H. Berens and P. Butzer, Uber die Darstelling holomorpher Funktionendurch Laplace-und Laplace Stieltjes Integrale, *Mat. Z.*, 81, 1963.
- [5] Cynoymu (G. Sunouchi), Direct theorems in the theory of approximation, *Acta Math.*, **20**, No 3-4 (1969), 409-420.
- [6] A.M. Musayev, To the question of approximation of functions by the Mellin type operators in the space $X_{\sigma_1,\sigma_2}(E^+)$. Proc. of IMM of NAS Azerbaijan, **28** (2008), 69-73.
- [7] R.M. Rzaev, A.M. Musayev, On approximation of functions by Mellin singular integrals, *Trans. of NAS of Azerbaycan*, **32**, No 1 (2012), 107-117.
- [8] A.M. Musayev, Multiparameter approximation of function of general variables by singular integrals, *Azerb. Techn. Univ. Baku*, No 2 (2014), 212-218.