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Abstract: Nonlinear interpolating subdivision schemes have been introduced
in recent years to reduce Gibbs phenomenon near irregular initial data points.
In this article, we presented a class of (2n − 1)-point nonlinear ternary inter-
polating subdivision schemes. It is shown that several of the existing nonlinear
ternary interpolating subdivision schemes become special cases for our pro-
posed class of schemes. Convergence for one special case of 5-point nonlinear
interpolating subdivision schemes is proved.
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1. Introduction

Subdivision schemes are well known for their applications in animation, com-
puter graphics and geometric modeling. Smooth curves and surfaces are gen-
erated from the initial control points by updating the existing data points and
inserting additional data points in-between. In ternary interpolating subdivi-
sion schemes, initial data points are kept intact and two additional points are
added around each existing point at every iteration. In an effort to keep the
existing initial data points, the limit curve generated by the interpolating sub-
division schemes produces oscillations also known as Gibbs phenomenon near
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big jumps in the initial data points. On the other hand, approximating subdivi-
sion schemes produce smooth curves but the limiting curve does not necessarily
pass through the initial data points. In several applications Gibbs phenomenon
is highly undesirable but at the same time it is required that the limiting curve
contain all initial data points.

To avoid Gibbs phenomenon while keeping all initial data points in the lim-
iting curve, nonlinear subdivision Schemes like ENO, WENO, PPH and PCHIP
([1], [2], [3], [4], [5], [6], [8], [9], [10]) were introduced during last several years.
Recently we have introduced two families of nonlinear ternary interpolating
subdivision schemes to reduce undesirable oscillations. In [4], we introduced
a family of 3-point nonlinear ternary interpolating subdivision schemes and
proved that it is C1 continuous. In [5], we developed a family of 5-point nonlin-
ear ternary interpolating subdivision schemes and showed that this family is C2

continuous. In this article, we introduce a general form of (2n−1)-point nonlin-
ear ternary interpolating subdivision schemes and show that several of existing
subdivision schemes including ([4], [5]) become special cases of our proposed
family of schemes.

We have the following arrangement for this article. In Section 2, preliminary
concepts and their properties are discussed. In Section 3, a general formula
for the (2n − 1)-point nonlinear ternary interpolating subdivision schemes is
presented and some special cases are discussed. Convergence of one special
case, 5-point nonlinear ternary interpolating subdivision schemes is proved in
Section 4. In Section 5, numerical results are presented.

2. Preliminaries

In this section, we revisit some basic results.

2.1. Averages

For (x1, x2) ∈ R2, we define a nonlinear function called Modified Geometric
Mean or MGM as

MGM(x1, x2) =

{

sign(x1)
√
x1x2 if x1x2 > 0

0 if x1x2 ≤ 0,
(2.1)

where sign(x1) = 1 if x1 ≥ 0 and sign(x1) = −1 if x1 < 0. The nonlinear
function MGM defined above has several interesting properties like:

MGM(x1, x2) =MGM(x2, x1), (2.2)
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MGM(−x1,−x2) = −MGM(x1, x2), (2.3)

|MGM(x1, x2)| ≤ |AM(x1, x2)| ≤ max(|x1|, |x2|), (2.4)

|MGM(x1, x2)−AM(x1, x2)| ≤ |AM(x1, x2)|, (2.5)

where AM(x1, x2) =
x1 + x2

2
.

The proofs of properties (2.1) - (2.5) are trivial.
We recall the PPH function (x, y) ∈ R2 defined by ([1], [2]) as

PPH(x, y) =

{

(1 + sign(xy)) xy
x+y

for xy > 0,

0 if xy ≤ 0.
(2.6)

The PPH function defined above also satisfies the properties in (2.1) - (2.5).

2.2. Nonlinear Interpolating Subdivision Schemes

A general form of (2n − 1)-points nonlinear univariate ternary interpolating
subdivision scheme SNL which maps set of data points fk = {fki }i∈Z into the
next refinement level of data points fk+1 = {fk+1

i }i∈Z is defined as

SNL(f
k) = fk+1 = S(fk) + F (d(2n−3)fk). (2.7)

Here S is a linear interpolating subdivision scheme defined as,

S(fk)3i−1 =

n−1
∑

j=−(n−1)

ajf
k
i+j,

S(fk)3i = fki ,

S(fk)3i+1 =

n−1
∑

j=−(n−1)

a−jf
k
i+j,

(2.8)

with a necessary condition of uniform convergence

n−1
∑

j=−(n−1)

aj =

n−1
∑

j=−(n−1)

a−j = 1, (2.9)

and F (d(2n−3)fk) is given by

F (d(2n−3)fk)3i−1 =M2n−1{AV (d(2n−3)fk
i−(n−1), d

(2n−3)fk
i−(n−2))

−AM(d(2n−3)fk
i−(n−1), d

(2n−3)fk
i−(n−2))},

F (d(2n−3)fk)3i = 0,

F (d(2n−3)fk)3i+1 = −M2n−1{AV (d(2n−3)fk
i−(n−1), d

(2n−3)fk
i−(n−2))

−AM(d(2n−3)fk
i−(n−1), d

(2n−3)fk
i−(n−2))}.

(2.10)
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In equation (2.10), the function AV (x, y) is a nonlinear average function.
It can be replaced either by MGM(x, y) or PPH(x, y). M2n−1 is a parameter
defined in the next section and d(2n−3)fi is representing (2n − 3)th difference
for n > 1, for example d(1)fi = fi+1 − fi.

2.3. Lagrange Polynomials

For given n, we define the Lagrange fundamental polynomials of degree 2n− 2,
at the points −(n− 1),−(n − 2), . . . , (n − 1), as

L2n−2
j (x) =

n−1
∏

k=−(n−1),k 6=j

x− k

j − k
, j = −(n− 1),−(n − 2), . . . , (n− 1), (2.11)

and Lagrange fundamental polynomials of degree 2n − 3 at the points −(n −
2),−(n − 3), . . . , (n − 1), by

L2n−3
j (x) =

n−1
∏

k=−(n−2),k 6=j

x− k

j − k
, j = −(n− 2),−(n − 3), . . . , (n− 1). (2.12)

Here we are stating three well known lemmas. Their proofs are straight
forward and can be found in [7].

Lemma 2.1. If L2n−2
j (−1

3) is a Lagrange fundamental polynomial of

degree 2n− 2 corresponding to the nodes {t}n−1
−(n−1) as defined by (2.11), then

L2n−2
j (−1

3) =

(−1)n+j−1
n
∏

k=−n+2

(3k − 2)

32n−2(1 + 3j)(n + j − 1)!(n − j − 1)!
,

j = −(n− 1),−(n − 2), . . . , (n − 1).

(2.13)

Lemma 2.2. If L2n−3
j (−1

3) is a Lagrange fundamental polynomial of

degree 2n− 3 corresponding to the nodes {t}n−1
−(n−2) as defined by (2.12), then

L2n−3
j (−1

3) =

(−1)n+j−2
n
∏

k=−n+3

(3k − 2)

32n−3(1 + 3j)(n + j − 2)!(n − j − 1)!
,

j = −(n− 2),
−(n− 3), . . . , (n − 1).

(2.14)
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Lemma 2.3. If L2n−3
j (−1

3 ) and L2n−3
j (−1

3 ) are Lagrange fundamental
polynomials defined by (2.11) and (2.12), then

ψj =
L2n−2
j (−1

3)− L2n−3
j (−1

3)

L2n−2
−(n−1)(−

1
3 )

=
(−1)n+j−1(2n − 2)!

(n+ j − 1)!(n − j − 1)!
,

j = −(n− 2),−(n − 3), . . . , (n− 1).

(2.15)

3. (2n-1)-Point Nonlinear Ternary
Interpolating Subdivision Schemes

In this section we give the general criteria to find the mask of the linear ternary
subdivision scheme S (2.8) associated with the nonlinear scheme SNL (2.7) and
the parameter values M2n−1 given in (2.10).

Theorem 3.1. Let βj = L2n−3
j (−1

3 ) and ψjbe defined in Lemma 2.3, then
the explicit formula for the mask of associated linear scheme S of SNL and the
parameter M2n−1 are defined by:

a−(n−1) = u,

aj = uψj + βj , j = −(n− 2),−(n − 3), . . . , (n − 1),
M2n−1 = 2a(n−1),

(3.1)

where u is a free parameter.

Remark 3.1. In the above theorem, M2n−1 can be replaced with twice of
the any value between the weighted average of a1, a2, . . . , a(n−1) and a(n−1).

3.1. 3-Point Nonlinear Ternary Interpolating Subdivision Schemes

We present a special case of 3-point nonlinear ternary interpolating subdivision
schemes.

Let n = 2 and u = w, then by (2.7), (2.8), (2.10) and (3.1), we get

fk+1
3i−1 = wfki−1 + (43 − 2w)fki + (w − 1

3 )f
k
i+1

+2(w − 1
3){AV (d(1)fki , d

(1)fki−1)−AM(d(1)fki , d
(1)fki−1)},

fk+1
3i = fki ,

fk+1
3i+1 = (w − 1

3)f
k
i−1 + (43 − 2w)fki +wfki+1

−2(w − 1
3){AV (d(1)fki , d

(1)fki−1)−AM(d(1)fki , d
(1)fki−1)}.

(3.2)
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This simplifies to

fk+1
3i−1 = (2w − 1

3)f
k
i−1 + (43 − 2w)fki + 2(w − 1

3 )AV (d(1)fki , d
(1)fki−1),

fk+1
3i = fki ,

fk+1
3i+1 = (43 − 2w)fki + (2w − 1

3 )f
k
i+1 − 2(w − 1

3 )AV (d(1)fki , d
(1)fki−1).

(3.3)

By replacing the average function AV (x, y) in (3.3) by MGM(x, y), we
get the following family of 3-point nonlinear interpolating subdivision schemes
given in [4],

fk+1
3i−1 = (2w − 1

3)f
k
i−1 + (43 − 2w)fki + 2(w − 1

3)MGM(d(1)fki , d
(1)fki−1),

fk+1
3i = fki ,

fk+1
3i+1 = (43 − 2w)fki + (2w − 1

3)f
k
i+1 − 2(w − 1

3)MGM(d(1)fki , d
(1)fki−1).

(3.4)
Here d(1)fki = fki+1 − fki . This family of nonlinear subdivision schemes is

C1 for 1
4 < w < 1

3 , as proved by Aslam in [4].
Similarly replacing the average function AV (x, y) in (3.3) by PPH(x, y),

we get another family of 3-point nonlinear ternary interpolating subdivision
schemes with C1 smoothness as given in [4].

3.2. 5-Point Nonlinear Ternary Interpolating Subdivision Schemes

We are presenting two special cases of 5-point nonlinear ternary interpolating
subdivision schemes below.

1. If n = 3, u = w− 4
81 ,and δfi = d(3)fi = fi+3 − 3fi+2 +3fi+1 − fi, then by

(2.7), (2.8), (2.10) and (3.1), we get

fk+1
3i−1 = (w − 4

81 )f
k
i−2 + (−4w + 10

27 )f
k
i−1 + (6w + 20

27)f
k
i

+(−4w − 5
81 )f

k
i+1 + wfki+2 + 2w{AV (δfki−2, δf

k
i−1)

−AM(δfki−2, δf
k
i−1)},

fk+1
3i = fki ,

fk+1
3i+1 = wfki−2 + (−4w − 5

81 )f
k
i−1 + (6w + 20

27 )f
k
i

= (−4w + 10
27 )f

k
i+1 + (w − 4

81 )f
k
i+2 − 2w{AV (δfki−2, δf

k
i−1)

−AM(δfki−2, δf
k
i−1)}.

(3.5)

This simplifies to

fk+1
3i−1 = (2w − 4

81)f
k
i−2 + (1027 − 6w)fki−1 + (6w + 20

27 )f
k
i

+(−2w − 5
81)f

k
i+1 + 2wAV (δfki−2, δf

k
i−1),

fk+1
3i = fki ,

fk+1
3i+1 = (−2w − 5

81 )f
k
i−1 + (6w + 20

27)f
k
i + (1027 − 6w)fki+1

+(2w − 4
81 )f

k
i+2 − 2wAV (δfki−2, δf

k
i−1).

(3.6)
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We will show the convergence of this family of nonlinear ternary interpo-
lating schemes in the next section.

2. As per our Remark 3.1, if we replace M5 = 2w with M5 = 1
27 − 3w in

(3.5), then we get

fk+1
3i−1 = (w − 4

81 )f
k
i−2 + (−4w + 10

27 )f
k
i−1 + (6w + 20

27)f
k
i

= (−4w − 5
81 )f

k
i+1 + wfki+2 + ( 1

27 − 3w){AV (δfki−2, δf
k
i−1)

−AM(δfki−2, δf
k
i−1)},

fk+1
3i = fki ,

fk+1
3i+1 = wfki−2 + (−4w − 5

81 )f
k
i−1 + (6w + 20

27 )f
k
i

+(−4w + 10
27 )f

k
i+1 + (w − 4

81)f
k
i+2

−( 1
27 − 3w){AV (δfki−2, δf

k
i−1)−AM(δfki−2, δf

k
i−1)}.

(3.7)

The above equation can be simplified to the the following subdivision
scheme of [5] which is C2 for 1

324 < w < 1
162 .

fk+1
3i−1 = (−w

2 − 5
162 )f

k
i−2 + (13 − w)fki−1 + (6w + 20

27)f
k
i

+(−7w − 2
81)f

k
i+1 + (52w − 3

162 )f
k
i+2 + ( 1

27 − 3w)AV (δfki−2, δf
k
i−1),

fk+1
3i = fki ,

fk+1
3i+1 = (52w − 3

162 )f
k
i−2 + (−7w − 2

81)f
k
i−1 + (6w + 20

27 )f
k
i

+(13 − w)fki+1 + (−w
2 − 5

162)f
k
i+2 − ( 1

27 − 3w)AV (δfki−2, δf
k
i−1).

(3.8)

4. Convergence Analysis of a Family of
5-Point Nonlinear Subdivision Schemes

In this section we prove the convergence of 5-point nonlinear ternary inter-
polating subdivision scheme SNL given in (3.6). The convergence for 7-point
or 9-point ternary nonlinear interpolating subdivision schemes can be proved
following the similar steps.

The 5-point nonlinear scheme SNL (3.6) when expressed in the form of
equation (2.7), gives us associated 5-point linear interpolating scheme S:

fk+1
3i−1 = (w − 4

81)f
k
i−2 + (−4w + 10

27)f
k
i−1 + (6w + 20

27)f
k
i

+(−4w − 5
81 )f

k
i+1 + wfki+2,

fk+1
3i = fki ,

fk+1
3i+1 = wfki−2 + (−4w − 5

81 )f
k
i−1 + (6w + 20

27)f
k
i

+(−4w + 10
27 )f

k
i+1 + (w − 4

81 )f
k
i+2,

(4.1)
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and the associated nonlinear function F

F (δfk)3i−1 = 2w{AV (δfki−2, δf
k
i−1)−AM(δfki−2, δf

k
i−1)},

F (δfk)3i = 0,
F (δfk)3i+1 = −2w{AV (δfki−2, δf

k
i−1)−AM(δfki−2, δf

k
i−1)}.

(4.2)

The linear subdivision scheme S given in (4.1) is C2 continuous for 1
324 <

w < 1
162 as proved by Zheng etc. [11].

We present the following lemmas about the linear subdivision schemes S
and the nonlinear function F given above.

Lemma 4.1. The subdivision scheme S defined in (4.1) satisfies the fol-
lowing inequalities:

1. |δS(fk)3i−1| ≤ (1181 − 8w)||δfk ||∞ for 0 < w < 1
81 ,

2. |δS(fk)3i| ≤ ( 3
81 + 12w)||δfk ||∞ for w > 0,

3. |δS(fk)3i+1| ≤ (1181 − 8w)||δfk ||∞ for 0 < w < 1
81 .

For the proof of this lemma, we refer to Proposition 1 in [5].

Lemma 4.2. The function F defined in (4.2) satisfies the following in-
equalities:

1. |δF (δfk)3i−1| ≤ 6w||δfk||∞, for w > 0,

2. |δF (δfk)3i| ≤ 12w||δfk ||∞, for w > 0,

3. |δF (δfk)3i+1| ≤ 6w||δfk||∞, for w > 0.

Proof. Since

δF (δfk)3i−1 = F (δfk)3i+2 − 3F (δfk)3i+1 + 3F (δfk)3i − F (δfk)3i−1,

therefore,

δF (δfk)3i−1 = 2w{AV (δfki−1, δf
k
i )−AM(δfki−1, δf

k
i ) + 3AV (δfki−2, δf

k
i−1)

−3AM(δfki−2, δf
k
i−1) + 0−AV (δfki−2, δf

k
i−1) +AM(δfki−2, δf

k
i−1)}.

(4.3)
Which simplifies to

δF (δfk)3i−1 = 2w{AV (δfki−1, δf
k
i )−AM(δfki−1, δf

k
i )}

+4w{AV (δfki−2, δf
k
i−1)−AM(δfki−2, δf

k
i−1)}.

(4.4)
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Since we are using the function AV (x, y) as a replacement for MGM(x, y)
in (2.1) or PPH(x, y) in (2.6), therefore, it satisfies properties (2.2) - (2.5). By
using property (2.5), we have

|δF (δfk)3i−1| ≤ 6w||δfk||∞ for w > 0. (4.5)

The proofs of the other two inequalities in Lemma 4.2 are very similar and
straight forward.

To prove the convergence of nonlinear scheme SNL, we recall the following
result from ([1], [2], [3]).

Theorem 4.3. For F , S defined in (2.7) and a linear operator δ : l∞(Z) →
l∞(Z), if ∃M > 0 such that ∀f ∈ l∞(Z)

||F (f)||∞ ≤M ||f ||∞, (4.6)

and ∃ c < 1 such that

||δS(f) + δF (δf)||∞ ≤ c||δf ||∞, (4.7)

then the subdivision scheme SNL is uniformly convergent. Moreover, if S is
Cα convergent then, for all sequence f ∈ l∞(Z), S∞

NL(f) is at least Cβ with
β = min(α,− log2(c)).

Proof. Since we are proving the convergence of 5-point ternary subdivision
scheme 3.4, therefore, associated linear subdivision scheme S is given in (4.1), F
is given in (4.2) and δfi = fi+3−3fi+2+3fi+1−fi. In order to prove conditions
(4.6) and (4.7) of Theorem (4.3), we have to consider each of them separately
at the points 3i− 1, 3i and 3i+ 1.

Now to prove equation (4.6), we consider F (f) at the point 3i−1 as defined
in (4.2), and by using the fact (2.5), we have,

|F (f)3i−1| ≤ 2w||f ||∞, for w > 0. (4.8)

At the point 3i,

|F (f)3i| = 0 (4.9)

and similarly, at the point 3i+ 1, by using property (2.5),

|F (f)3i+1| ≤ 2w||g||∞, for w > 0. (4.10)
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Let M = 2w, then M > 0 for w > 0. Therefore, from equations (4.8), (4.9)
and (4.10), we get

||F (f)||∞ ≤M ||f ||∞. (4.11)

Which proves equation (4.6)
To prove equation (4.7), we again need to consider all three cases.
At the point 3i− 1:

|δS(fk)3i−1 + δF (δfk)3i−1| ≤ |δS(fk)3i−1|+ |δF (δfk)3i−1|.

By Lemma 4.1, Part 1 and Lemma 4.2, Part 1, for 0 < w < 1
81 , we get

|δS(fk)3i−1 + δF (δfk)3i−1| ≤ (
11

81
− 8w)||δfk||∞ + 6w||δfk||∞,

|δS(fk)3i−1 + δF (δfk)3i−1| ≤ (
11

81
− 2w)||δfk ||∞ for 0 < w <

1

81
. (4.12)

At the point 3i:

|δS(fk)3i + δF (δfk)3i| ≤ |δS(fk)3i|+ |δF (δfk)3i|.

By Lemma 4.1, Part 2 and Lemma 4.2, Part 2, for 0 < w < 1
81 , we get

|δS(fk)3i + δF (δfk)3i| ≤ (
3

81
+ 12w)||δfk ||∞ + 12w||δfk||∞,

|δS(fk)3i + δF (δfk)3i| ≤ (
1

27
+ 24w)||δfk ||∞ for 0 < w <

1

81
. (4.13)

At the point 3i+ 1:

|δS(fk)3i+1 + δF (δfk)3i+1| ≤ |δS(fk)3i+1|+ |δF (δfk)3i+1|.

By Lemma 4.1, Part 3 and Lemma 4.2, Part 3, for 0 < w < 1
81 , we get

|δS(fk)3i+1 + δF (δfk)3i+1| ≤ (
11

81
− 8w)||δfk||∞ + 6w||δfk||∞,

|δS(fk)3i+1 + δF (δfk)3i+1| ≤ (
11

81
− 2w)||δfk ||∞ for 0 < w <

1

81
. (4.14)

Let c = max{11
81 − 2w, 1

27 + 24w}, then for 0 < w < 1
81 , we get 0 < c < 1.

Therefore, from (4.12), (4.13) and (4.14), we have

||δS(fk) + δF (δfk)||∞ ≤ c||δfk||∞ (4.15)
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for c < 1 with 0 < w < 1
81 .

This proves equation (4.7) and consequently proves that our class of non-
linear 5-point ternary interpolating subdivision schemes SNL given in (3.4) is
uniformly convergent for 0 < w < 1

81 .
It is noted that c as given in (4.15) can be restricted as 5

39 < c < 5
27 for

1
324 < w < 1

162 . Which gives β = 2 as defined in Theorem 4.3 and hence proves
that S∞

NL is C2 for 1
324 < w < 1

162 .

5. Numerical Results

We are presenting curves generated by nonlinear and associated linear interpo-
lating subdivision schemes. The graphs on the left side of Figure 1 are generated
by 3-points schemes at w = 0.251. Both of the 3-point schemes are C1 smooth.
The graphs on the right side of Figure 1 are generated by 5-point nonlinear and
associated linear schemes with w = 1/320. Both of the 5-point schemes are C2

smooth. It is evident that the nonlinear schemes reduce the Gibbs phenomenon
significantly.

6. Conclusion

In this article, we proposed a general formula for (2n−1)-point nonlinear ternary
interpolating subdivision schemes. It is shown that 3-point and 5-point non-
linear ternary subdivision schemes developed in ([4], [5]) are special cases to
our proposed schemes. Convergence of another special case (5-point nonlinear
ternary interpolating subdivision scheme) is proved and it is shown that it is at
least C2 continuous. Numerical results are presented to show the performance
of nonlinear over linear subdivision schemes.
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Initial data points

3−point Linear

3−point Nonlinear

Initial data points

5−point Linear

5−point Nonlinear

Figure 1: On the left, initial control points and the curves generated
by 3-point nonlinear ternary interpolating subdivision scheme (5th
level) in (3.4) and its associated 3-point linear ternary interpolating
subdivision scheme with w = 0.251. On the right, same initial con-
trol points and the curves generated by 5-point nonlinear ternary
interpolating subdivision scheme (5th level) in (3.8) and its asso-
ciated 5-point linear ternary interpolating subdivision scheme with
w = 1/320.
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