THE PROBLEM OF OBSTACLE FOR
THE FUNDAMENTAL EIGENVALUE

Abstract

By using the tools of derivatives with respect to the domain and the Bernoulli's free boundary problem for Laplacian operator we give sufficient conditions in the case of placement obstacle problems for Laplacian Dirichlet eigenvalue.

Citation details of the article



Journal: International Journal of Applied Mathematics
Journal ISSN (Print): ISSN 1311-1728
Journal ISSN (Electronic): ISSN 1314-8060
Volume: 31
Issue: 4
Year: 2018

DOI: 10.12732/ijam.v31i4.7

Download Section



Download the full text of article from here.

You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.

References

  1. [1] H.W. Alt and L.A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.
  2. [2] O.M. Badahi, I. Ly, D. Seck, Analysis of stability of the exterior and interior Bernoulli’s free boundary problems, Applied Mathematical Sciences, 10, No 12 (2016), 591-612.
  3. [3] O.M. Badahi, The variation of the first eigenvalue of the Laplace operator and the problem of locating an obstacle. Internat. J. of Pure and Appl. Math., 116, No 2 (2017), 361-372.
  4. [4] M. Berger and B. Gostiaux, G´eom´etrie diff´erentielle: vai`et´es, courbes et surfaces, Puf Mathematiques (2013).
  5. [5] A. Beurling, On free boundary for the Laplace equation, Seminars on An- alytic Functions I, Institute Advance Studies Seminars (1957), Princeton, 248-263.
  6. [6] E.B. Davies, Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math. 42, Cambridge University Press, Cambridge (1995).
  7. [7] B. Chen, Total Mean Curvature and Submanifolds of Finite Type, Maths. Michigan State Univ., World Scientific (2014).
  8. [8] M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. Real Acad. Cien. Exactas Fis. Nat., Ser. A - Math., 96, No 1 (2002), 95-121.
  9. [9] M. Dambrine, Hessienne de forme et stabilit´e des formes critiques, PhD Thesis, ´Ecole Normale Sup´erieure de Cachan (2000).
  10. [10] D. Daners and B. Kawohl, An isoperimetric inequality related to a Bernoulli problem, Calculus of Variations and PDE’s 39 (2010), 547-555.
  11. [11] M. Dambrine and M. Pierre, About stability of equilibrium shapes, Math. Model. Numer. Anal., 34, No 4 (2000), 811-834.
  12. [12] R. Dautray and J.L. Lions, Analyse math´ematique et Calcul num´erique pour les sciences et les techniques, Vol. 2, Masson (1984).
  13. [13] J. Descloux, On the two dimensional magnetic shaping problem without surface tensions, Report Nr. 07.90, ´Ecole Polytechnique F´ed´erale de Lausanne (1990).
  14. [14] M. Flucher and M. Rumpf, Bernoulli’s free boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math., 486 (1997), 165-204.
  15. [15] E.M. Harrell II, P. Kroger, K. Kurata, On the placement of an obstale nor well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., 33, No 1 (2001), 240-259.
  16. [16] A. Henrot, Subsolutions and Supersolutions in a free boundary problem, Ark. Mat., 32 (1994), 79-98.
  17. [17] A. Henrot and M. Pierre, About crtical points of the energy in a electromagnetic shaping problem, In: Boundary Control and Boundary Variation (Sophia - Antipolis, 1990), Springer, Berlin (1992), 238-252.
  18. [18] A. Henrot andM. Pierre, Variations et optimisation de formes, une analyse g´eom´etrique, Math´ematiques et Applications, # 48, Springer (2005).
  19. [19] A. Henrot, M. Pierre, M. Rihani, Finite dimensional reduction for the positivity of some second shape devivatives, Methods and Applications of Analysis, 10 (2003), 457-476.
  20. [20] A. Henrot, M. Pierre, M. Rihani, Positivity of the shape Hessian and instability of some equilibrium shapes, Mediterr. J. Math., 1 (2004), 195-214.
  21. [21] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator: the exterior convex case, J. Reine Angew., 521 (2000), 85-97.
  22. [22] A. Henrot and H. Shahgholian, Existence of classical solutions to a free boundary problem for the p-Laplace operator II: the interior convex case, Indiana Univ. Math. J., 49, No 1 (2000), 301-323.
  23. [23] A. Henrot and D. Seck, Retour `a une ancienne approche, Publ. Math´ematiques de Besan¸con - Analyse non lin´eaire, 15 (1995/97), 29-40.
  24. [24] Y.O. Mohamed Abdelhaye, Badahi Ould Mohamed and M.V. Ould Moustapha, Wave kernel for the Schr¨odinger operator with a Liouville potential, Far East J. of Math. Sci., 102, No 7 (2017), 1523-1532.
  25. [25] F. Murat, J. Simon, Derivation de fonctionnelles par `a un domaine g´eom´etrique, Numer. Pr´epublications de Paris 6.
  26. [26] I. Ly, D. Seck, Isoperimetric inequality for an interior free boundary problem with p-Laplacian operator, Electron. J. Differ. Equ., 2004 (2004), Art. # 109, 1-12.
  27. [27] D. Seck, Etude d’ un probl`eme `a fronti`ere libre de type Bernoulli, Th`ese d’Universit´e Franche-Comt´e num´ero d’ordre 505 (1996).
  28. [28] M. Schiffer, Hadamard’s formula and variation of domain functions. Amer. J. Math., 68 (1946), 417.
  29. [29] J. Simon, Differential with respect to the domain in boundary value problems. Numer. Funct. Anal. and Optimiz., 2, No 7-8 (1980), 649-687.