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Abstract: We present a stochastic model of the population dynamics of
HIV/AIDS with treatment and inflow of infectives. Starting with a determin-
istic compartmental model, each of the four ordinary differential equations are
stochastically perturbed. An invariant Rσ similar to the basic reproduction
number of an ordinary differential equation system is introduced. Under con-
ditions which permit the existence of a disease-free equilibrium point, we prove
almost sure exponential stability of the disease-free equilibrium for Rσ < 1. We
also investigate asymptotic behaviour of the solutions to the stochastic model
around the endemic equilibrium of the underlying deterministic model. Our
theoretical results are illustrated by simulations with parameters applicable to
South Africa.
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1. Introduction

HIV/AIDS has become a global growing public health problem. The rate of
the spread of the HIV/AIDS epidemic has reached unseemly high levels of new
infections and AIDS deaths. On a global scale, the HIV epidemic has stabilized,
but the greatest burden of HIV remains in sub-Saharan Africa and within this
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region, especially the women are severely affected. Scientists in general have es-
tablished different aspects behind the rapid increase of HIV/AIDS in Southern
Africa, and to these, we shall include biological and social aspects, economic and
political issues, and migration patterns which we know also played a big role
in the dynamics of HIV/AIDS in this region. HIV/AIDS affects mostly people
in the economically productive age range, reducing the work-force, and thereby
constraining development [21]. South Africa has the biggest HIV epidemic in
the world in terms of both the incidence rate and number of people living with
HIV. In 2015, an estimated 7 million people living with HIV and 7.03 million
in 2016 [15]. In 2015, there were 380,000 new infections and 180,000 people
died from AIDS-related causes [18]. South Africa has the largest antiretrovi-
ral treatment (ART) programme globally and these efforts have been largely
financed from its own domestic resources. The country now invests more than
1.5 billion annually to run its HIV/AIDS programmes [16].

The dynamics of HIV/AIDS in the context of Southern Africa present seri-
ous challenges due to its complexities and therefore require interventions. Math-
ematical modeling in epidemiology has been utilized to assess the impact of the
disease on the population, to identify key disease drivers and to make future
projections. Parameters involved in epidemic models may not be absolutely
constant, due to inhomogeneities and environmental perturbations. In partic-
ular, it is important to identify areas of uncertainty that may be crucial for
control of the disease. There are different ways of dealing with random effects
and uncertainty in disease modeling. One of the approaches in this regard is
to introduce stochastic differential equation (sde) models in the population dy-
namics of infectious diseases. In recent years, many authors have studied sde

epidemic models, for instance [4, 6, 9, 17, 14]. An important aspect in the
study of disease models is stability of equilibrium points. Specifically, for a de-
terministic disease model, asymptotic stability of the disease-free equilibrium
(dfe) means that in the long run, the disease will vanish from the popula-
tion. For sde systems, there are different versions of the concept of stability.
Many authors investigate asymptotic behaviour of stochastic systems around
the equilibria of the underlying deterministic models and examples of those can
be found in [5, 10, 11, 22, 23]. In the papers by [4] Dalal et al. (HIV), [6] Gray
et al. (SIS), [3] Chen et al. (SIR), and [19] Witbooi (SEIR), it is proved that
stochastic perturbation actually enhances stability of the disease-free equilib-
rium for the specific models. The current paper presents another contribution
in this regard.

The aim of this paper is to study the effect of a certain type of stochastic
perturbation in a population model of HIV. Our stochastic model is based on
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a deterministic model which is very similar to that of Cai et al [2], and in
particular we are interested in the long term behaviour and we investigate for
a type of stability in mean. First we introduce the inflow of infectives in a
deterministic compartmental model, and thereafter we impose the stochastic
perturbation in such a manner that the total population size itself is perturbed
by white noise. We introduce an analogue of the basic reproduction number
and we link it to almost sure exponential stability of the dfe. Here we note
that for an sde system the concept of almost sure exponential stability is very
similar to global asymptotic stability when working with ordinary differential
equations. We prove a result on almost sure exponential stability of the dfe,
in the absence of inflow of infectives and with no perturbations on the class of
susceptibles.

The remainder of this paper is set up as follows. In Section 2 we give some
preliminaries. In Section 3 we present the model and we study the existence of
global positive solutions. Section 4 covers a theorem on almost sure exponential
stability of the disease-free equilibrium when there is no inflow of infectives.
We present numerical simulations to illustrate the results. Section 5 deals
with asymptotic behaviour of the solutions to the stochastic model around the
endemic equilibrium of the underlying deterministic model. Again we provide
numerical simulations to illustrate our theoretical results. In Section 6 we
present some concluding remarks.

2. Preliminaries

Let us denote by R
n
+ (resp. R

n
++) the set of points in R

n having only non-
negative (resp. strictly positive) coordinates.

Throughout this paper we assume to have a complete probability space
(Ω,F ,P) with a filtration, {Ft}t≥0, that is right continuous and F0 containing
all the subsets having measure zero.

Consider an equation of the form (1) below, for an k-dimensional Brownian
motion B(t) on Ω.

dx(t) = f(t, x)dt+ g(t, x)dB(t), t ≥ 0. (1)

A solution with initial value x(0) = x0 is denoted by x(t, x0). Assume that
f(t, 0) = g(t, 0) = 0 for all t ≥ 0, so the origin point is an equilibrium of (1).

By L we denote the infinitesimal generator of an equation of the form (1),
see [13] of Øksendal, defined for a function V (t, x) ∈ C1,2(R+ × R

k).
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Definition 1. (see [12]). The equilibrium x = 0 of the system (1) is said
to be almost surely exponentially stable if for all x0 ∈ R

n,

lim sup
t→∞

1

t
ln |x(t, x0)| < 0 almost surely (a.s.).

The following observation which we quote from [20] is useful when dealing
with exponential stability.

Lemma 2. For k ∈ N, let X(t) = (X1(t),X2(t), ...,Xk(t)) be a bounded
R
k-valued function and let (t0,n) be any increasing unbounded sequence of pos-

itive real numbers. Then there is a family of sequences (tl,n) such that for each
l ∈ {1, 2, ..., k}, (tl,n) is a subsequence of (tl−1,n) and the sequence Xl(tl,n)
converges to the largest limit point of the sequence Xl(tl−1,n).

Remark 3. The following inequality is applied in Section 5:

Given any finite sequence of real numbers u1, u2, ... , un, then

(

n
∑

i=1

ui)
2 ≤ n(

n
∑

i=1

u2i ) (2)

3. Stochastic HIV Model

Let W (t) = (W0(t),W1(t),W2(t),W3(t)) be a 4-dimensional Wiener process
defined on this probability space. The components of W are assumed to be
mutually independent. The non-negative constants σ0, σ1, σ2 and σ3 denote
the intensities of the stochastic perturbations that we shall introduce.

We assume a homogeneously mixing population of size N(t) at time t. The
total population N(t) is subdivided into the classes of susceptible individuals
S(t), asymptomatic phase of HIV I(t), symptomatic phase J(t), and the AIDS
patients A(t). The term µK is the recruitment rate of susceptibles into the pop-
ulation, µ being the birth rate which is assumed to coincide with the average
mortality rate by natural causes. The disease-induced mortality rate is denoted
by δ. The parameters β1 and β2 denote the probabilities of disease transmission
per contact by an infective in the asymptomatic and the symptomatic phase
respectively. For an individual, c is the average number of contacts with others
per unit time. By k1 and k2 we denote the transfer rates from the asymp-
tomatic phase I to the symptomatic phase J and from the symptomatic phase
to the A-class, respectively. The parameter α is the rate of transfer from the
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symptomatic phase J to the asymptomatic phase I due to treatment. The pa-
rameters Q1, Q2 denote the rates of inflow of infectives into the asymptomatic
class and into the symptomatic class respectively.

Based on the assumptions above, we present the following stochastic model:

dS = [µK − c(β1I + β2J)S − µS] dt+ σ0SdW0(t),

dI = [Q1 + c(β1I + β2J)S − (µ+ k1)I + αJ ] dt+ σ1IdW1(t),

dJ = [Q2 + k1I − (µ + k2 + α)J ] dt+ σ2JdW2(t),

dA = [k2J − (µ+ δ)A] dt+ σ3AdW3(t). (3)

We now show that solutions of (3) exist globally and are positive.

Theorem 4. For model (3) and any initial value (S(0), I(0), J(0), A(0)) ∈
R
4
++, there is a unique solution (S(t), I(t), J(t), A(t)) on t ≥ 0 which remains

in R
4
++ with probability one.

Proof. Note that the coefficients of the system (3) are locally Lipschitz
continuous. Thus there exists a unique local solution on t ∈ [0, τen), where τen
is the explosion time. We need to show that this solution is global; that is,
τen = ∞ a.s.

Let m0 > 0 be sufficiently large so that S(0), I(0), J(0), and A(0) belong to
the interval [1/m0,m0]. For each integer m ≥ m0, define a sequence of stopping
times by

τm = inf
{

t ∈ [0, τen) : S(t) /∈

(

1

m
,m

)

or I(t) /∈

(

1

m
,m

)

or

J(t) /∈

(

1

m
,m

)

or A(t) /∈

(

1

m
,m

)

}

. (4)

Now since τm is nondecreasing, the following limit exists:

τ∞ = lim
m→∞

τm,

and τ∞ ≤ τen (a.s.). In what follows we prove that τ∞ = ∞ a.s. If this
statement is violated, then there exists T > 0 and ǫ ∈ (0, 1) such that

P{τ∞ ≤ T} > ǫ. (5)

Thus, there is an integer m1 ≥ m0 such that

P{τm ≤ T} ≥ ǫ ∀m ≥ m1.
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Choose a0 > 0 sufficiently small in order to have a0cβ < µ and a0cβb < µ.

Consider the function V1 defined by

V1(S, I, J,A) =

(

S − a0 − a0 ln
S

a0

)

+ (I − 1− ln I)

+ (J − 1− ln J) + (A− 1− lnA) .

Note that each of the four bracketed terms are non-negative while (S, I, J,A) ∈
R
4
++. By applying Itô’s formula we have

dV1(S, I, J,A) = LV1dt+ (S − a0)σ0dW0(t) + (I − 1)σ1dW1(t)

+(J − 1)σ2dW2(t) + (A− 1)σ3dW3(t), (6)

where

LV1 =
[

(

1−
a0
S

)(

µK − c(β1I + β2J)S − µS
)

]

+
[

(

1−
1

I

)(

Q1 + c(β1I + β2J)S − (µ + k1)I + αJ
)

]

+
[

(1−
1

J
)(Q2 + k1I − (µ + k2 + α)J)

]

+
[

(1−
1

A
)(k2J − (µ+ δ)A)

]

+
1

2
(a0σ

2
0 + σ2

1 + σ2
2 + σ2

3)

≤ µK − µ(I + J) + a0c(β1I + β2J) + µ(3 + a0) + k1 + k2

+α+ δ +Q1 +Q2 +
1

2

(

a0σ
2
0 + σ2

1 + σ2
2 + σ2

3

)

.

Note that by the choice of a0 we have:

a0cβ1I − µI = I (a0cβ1 − µ) < 0

and

a0cβ2J − µJ = J (a0cβ2 − µ) < 0.

Therefore,

LV1 ≤ C,

where

C = µ(K + (3 + a0)) + k1 + k2 + α+ δ +Q1 +Q2 +
1

2

(

a0σ
2
0 + σ2

1 + σ2
2 + σ2

3

)

is a constant.
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Integrating both sides of (6) from 0 to τm ∧ T yields

∫ τm∧T

0
dV1(S(s), I(s), J(s), A(s)) ≤

∫ τm∧T

0
Cds+H(τm ∧ T ),

where

H(s) =

∫ s

0
(S(u)− a0)σ0dW0(u) +

∫ s

0
(I(u)− 1)σ1dW1(u)

+

∫ s

0
(J(u)− 1)σ2dW2(u) +

∫ s

0
(A(u)− 1)σ3dW3(u).

Note that H(s) is a mean zero martingale process and therefore by taking
expectation we have

EV1(S(τm ∧ T ), I(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ))

≤ V1(S(0), I(0), J(0), A(0)) + CT.

For each m ≥ m1, let Ωm = {ω ∈ Ω : τm(ω) < T}. From equation (5), we have
that P(Ωm) ≥ ǫ for each m > m1. For every ν ∈ Ωm, we have

{S(τm, ν), I(τm, ν), J(τm, ν), A(τm, ν)}
⋂

{m, 1/m} 6= ∅.

Consequently,

V1(S(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ), A(τm ∧ T )) ≥ Gm,

where

Gm = min
u∈{1,a0}

{

m− u− u ln
m

u
,
1

m
− u− u ln

1

um

}

> 0.

Then we obtain

V1(S(0), I(0), J(0), A(0)) + CT

≥ E(1Ωm
V1(S(τm ∧ T ), I(τm ∧ T ), J(τm ∧ T ), A(τm ∧ T ))

≥ ǫGm,

where 1Ωm
is the indicator function of Ωm. Letting m → ∞ leads to the

contradiction ∞ = V1(S(0), I(0), J(0), A(0))+CT < ∞. Therefore, the solution
of model (3) is positive and will not explode in finite time, with probability one.
This completes the proof. �
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4. Almost sure exponential stability

We investigate the behaviour of the system (3) under small perturbations,
with σ0 = 0, and Q1 = Q2 = 0. In this case the disease-free equilibrium
E0 = (K, 0, 0, 0) exists. The basic reproduction number of the underlying de-
terministic model is very similar to that in [2] and is given as

R0 =
cK[β1(µ + k2 + α) + β2k1]

(µ+ k1)(µ+ k2) + αµ
.

The following subset Φ of sample paths will be of interest:

Φ =
{

ω ∈ Ω| (S(t, ω), I(t, ω), J(t, ω), A(t, ω) ∈ R
4
++ for all t ≥ 0

}

.

From Theorem 4 it follows that P(Ω\Φ) = 0. In the remainder of this
section we assume that sample paths are restricted to Φ.

Proposition 5. If (S(0), I(0), J(0), A(0)) ∈ R
4
++, then almost surely,

S(t) ≤ K for all t > 0.

Proof. Given any path (in Φ), then

d(S −K)

dt
= −µ(S −K)− c(β1I + β2J)S ≤ −µ(S −K).

Therefore S(0) < K implies that S(t) < K for all t > 0. �

The following numbers will play a key role in our study of exponential
stability. Let ξ0, ξ1, ξ2, ξ3 and ξ4 be non-negative numbers, chosen as follows:

ξ1 = β1(µ+ k2 + α) + β2k1, ξ2 = β1α+ β2(µ+ k1),

ξ4 = (µ+ k1)(µ + k2) + µα.

The numbers ξ0 and ξ3 will be chosen later. For now we just bear in mind that
they are both non-negative.

We continue by preparing notation and concepts for our theorem on almost
sure exponential stability. Recall that we work with sample paths in Φ. This
implies in particular that if Z(t) is defined as below, then Z(t) > 0 for all t ≥ 0.
Thus we define

Z(t) = ξ0(K − S(t)) + ξ1I(t) + ξ2J(t) + ξ3A(t) (7)

and let

V2(t) = lnZ(t).
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For a stochastic process {x(t)}t≥0 we write

〈x〉t =
1

t

∫ t

0
x(s)ds.

Proposition 6. The disease free equilibrium of system (3) is almost surely
exponentially stable if

lim sup
t→∞

〈LV2(X)〉t < 0 (a.s.).

Proof. We start off by noting that

V2(X(t)) = V2(X(0)) +

∫ t

0
LV2(X(u))du +Mt,

where

Mt =

∫ t

0

(

σ0S(u)

z(X(u))
+

σ1I(u)

z(X(u))
+

σ2J(u)

z(X(u))
+

σ3A(u)

z(X(u))

)

dW (u).

The strong law of large numbers for local martingales, see [12, p12] for instance,
implies that

lim
t→∞

1

t
Mt = 0 (a.s.).

Also, we observe that

lim
t→∞

1

t
V2(X(0)) = 0.

Therefore

lim sup
t→∞

1

t
V2(X(t)) = lim sup

t→∞

1

t

∫ t

0
LV2(X(u))du

= lim sup
t→∞

〈LV2(X)〉t (a.s.).

This completes the proof. �

We now calculate LV2:

LV2 = −
ξ0
Z

[µK − c(β1I + β2J)S − µS] +
ξ1
Z

[c(β1I + β2J)S

−(µ+ k1)I + αJ ] +
ξ2
Z

[k1I − (µ + k2 + α)J ] +
ξ3
Z

[k2J

−(µ+ δ)A]−
1

2

[

(

ξ1σ1I

Z

)2

+

(

ξ2σ2J

Z

)2

+

(

ξ3σ3A

Z

)2
]

.
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By Lemma 2 we can find, for every sample path w ∈ Φ, a sequence tn which is
increasing and unbounded, such that

lim sup
t→∞

L〈V2(w)〉t = lim
n→∞

L〈V2(w)〉tn ,

and for which we can define the following limits:

s = lim
n→∞

〈S〉tn , i = lim
n→∞

〈

I

Z

〉

tn

, j = lim
n→∞

〈

J

Z

〉

tn

, a = lim
n→∞

〈

A

Z

〉

tn

,

and

q = lim
n→∞

〈

K − S

Z

〉

tn

.

In particular, we note that ξ0q+ ξ1i+ ξ2j+ ξ3a = 1 and ξ0q, ξ1i, ξ2j, ξ3a ∈
[0, 1].

We define F (ξ) as:

F (ξ) = F (ξ0, ξ1, ξ2, ξ3) = lim sup
t→∞

〈LV2〉t. (8)

Then F (ξ) takes the form:

F (ξ) = ξ0 [−µq + c(β1i+ β2j)s] + ξ1 [c(β1i+ β2j)s − (µ + k1)i

+αj] + ξ2 [k1i− (µ + k2 + α)j] + ξ3 [k2j − (µ + d)a]

−
1

2

[

(ξ1σ1i)
2 + (ξ2σ2j)

2 + (ξ3σ3a)
2
]

. (9)

An invariant Rσ of the model (3).

Let us define a function h : [0, 1] → R as follows:

h(u) =
ξ1ξ2
2

(σ1u)
2 + σ2

2(1− u)2

β1ξ2u+ β2ξ1(1− u)
. (10)

Then h is continuous and positive. Therefore h has a minimum, which we shall
denote by h∗. Note that h∗ > 0. In the final theorem we use the following
number Rσ, which we define to be:

Rσ =
cK[β1(µ+ k2 + α) + β2k1]

(µ+ k1)(µ + k2) + αµ+ h∗
. (11)
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Theorem 7. If Rσ < 1, then restricted to the subset Φ, I and J almost
surely converge exponentially to 0.

Proof. For ξ1, ξ2 and ξ4 as above (and for ξ0 = ξ3 = 0), we define Z0 =
ξ1I + ξ2J and V0 = lnZ0. It suffices to prove that lim sup

t→∞
〈LV0〉t < 0. Also, we

let F0 = F (0, ξ1, ξ2, 0). We need to prove that F0 < 0.
From (9) we simplify to have

F0 < ξ1cK(β1i+ β2j)− ξ4(β1i+ β2j) −
1

2

[

(ξ1σ1i)
2 + (ξ2σ2j)

2
]

. (12)

Now we note that

(ξ1σ1i)
2 + (ξ2σ2j)

2 =
(ξ1σ1i)

2 + (ξ2σ2j)
2

β1i+ β2j
(β1i+ β2j),

and since ξ2j = 1− ξ1i, we have

F0 < cKξ1(β1i+ β2j)− ξ4(β1i+ β2j)− h(ξ1i)(β1i+ β2j).

This leads to the inequality below:

F0 < cKξ1(β1i+ β2j)− ξ4(β1i+ β2j)− h∗(β1i+ β2j)

= ξ4(Rσ − 1)(β1i+ β2j) < 0.

�

We now prove the main theorem.

Theorem 8. If Rσ < 1, then the disease-free equilibrium is almost surely
exponentially stable.

Proof. The proof is by contradiction. From Theorem 7 we know that
limt→∞ I(t) = 0 (a.s) and limt→∞ J(t) = 0 (a.s). Let us now suppose, contrary
to the claim of this theorem, that for some subset Θ of Φ with P(Θ) > 0, on Θ
we have:

lim
t→∞

[(K − S(t)) +A(t)] 6= 0. (13)

Now let Z be as in (7) and F (ξ) as in (9). In particular we choose ξ0 =
ξ1 = ξ2 = ξ3 = ξ4 = 1. Then in view of (13) and by the definition of i and j,
on Θ we have i = 0 (a.s) and j = 0 (a.s). Thus, from (9) it follows that

F (ξ) ≤ −µq − (µ+ δ)a −
1

2
(σ3a)

2 (a.s).

Therefore, F < 0 (a.s). Then by Proposition 6 it follows that on Θ, we
have that limt→∞(K − S(t)) = 0 (a.s) and limt→∞A(t) = 0 (a.s). This is a
contradiction, and it completes the proof. �
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A case study of HIV/AIDS in South Africa.

The parameters such as c, α, k1, k2 found in [1, 8, 7] are applicable to Southern
Africa. In [7] for instance, the average number of sexual partners per given
time denoted by c has been assigned values ranging from 1 to 2 for a specific
case. In our case we take c = 3 in order to avoid addressing a problem that
is simpler than the actual one. We expect the following inequality holds β1 <
β2, knowing that the probability of disease transmission in the symptomatic
phase far exceeds that of the asymptomatic phase. In the year 2016, the life
expectancy in South Africa was estimated at 62.4 years, see for instance in
[15]. The mortality rate µ is simply the inverse of the life expectancy given by
1

62.4 yr−1. The disease induced mortality rate δ is found in [15]. The parameter
K is the size of the population when disease-free and does not complicate our
task. We estimate values for the rates of inflow of infectives Q1 and Q2 since
they are not easily obtainable. The parameter values of the model are given in
the table below.

Parameters Value Source

α 0.33 [1]
k1 0.125 [8]
k2 0.1 [1]
c 3 cf. [7]
µ 1

62.5 [15]
δ 0.279 [15]

Table 1: The parameters values in this table are fixed

Regarding the initial conditions, we start off with the year 2016 in order to
do our projection. According to the South African 2016 mid-year population
estimate [15], the total population which we denote byN(t16) = S(t16)+I(t16)+
J(t16)+A(t16), and where t16 is the time on 25 August 2016, was 55.91 million.
An estimated 7.03 million of the total population were infected with HIV/AIDS
in 2016. This means that the classes I(t16), J(t16) and A(t16) add up to 7.03
million. We shall then use the parameters listed in Table 1 to find a suitable
equilibrium point to split the numbers between the classes I(t16), J(t16) and
A(t16). We vary the values of β1 and β2 in order to vary the value of the basic
reproduction number.



A STOCHASTIC MODEL FOR HIV EPIDEMIC WITH... 557

Let us denote the force of infection by

λ = c(β1I + β2J).

We note that with inflow of infectives, we find the following equilibrium values
for I and J :

I =
α (λ+ µ) Q2 + (α+ µ+ k2) (K λµ+ (λ+ µ) Q1)

(λ+ µ) ((µ+ k1) (µ+ k2) + αµ)
and

J =
1

(α+ µ+ k2)
[Q2 + k1I] .

This consideration leads us to assign initial values to I0 and J0, and thus our
initial state is taken as:

S0 = 48.88, I0 = 5.22, J0 = 1.46, A0 = 0.344.

We present some simulations in order to illustrate the analytical results of
stochastic model (3) and the underlying deterministic system. For simplicity
we use one common value for σ1, σ2 and σ3 (call it σ) while σ0 = 0. In each
graph we show trajectories of J(t) for the stochastic model and of J(t) for the
underlying deterministic model with respect to time in years.
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Figure 1: Improving stability in the case Rσ < 1 and σ = 0.05.

Chosen values: β1 = 0.000176, β2 = 0.00037, σ = 0.05.
Calculated values: R0 = 0.967734, Rσ = 0.9350.

In Figure 1 we choose β1 = 0.000176, β2 = 0.00037 and σ = 0.05. In this
case Rσ is found to be less than 1. Theorem 7 assures us that the disease-free
equilibrium is almost surely exponentially stable. Indeed the graph shows that
over time, the state of the system converges to disease-free equilibrium. Figure
2 shows that for small values of the perturbation parameter there is convergence
to disease-free equilibrium for a bigger range of values of the basic reproduction
number of the underlying deterministic model.
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Figure 2: Stability obtained beyond R0 < 1 while Rσ < 1.

Chosen values: β1 = 0.000186, β2 = 0.00039, σ = 0.06.
Calculated values: R0 = 1.022, Rσ = 0.9702.

5. Asymptotic behaviour around the endemic equilibrium

We investigate the asymptotic behaviour around the endemic equilibrium of
the underlying deterministic model system.

Before stating the main theorem, let us first define the positive numbers
below:

D1 = 1 +
2µ+ k2

α
, D2 = µ+

(µ+ k1)(2µ + k2)

α
,

D3 = 2µ+
(µ + k1)(2µ + k2)

α
+

µ(2µ + k2)

α
,

D4 =
2D3

cβ1
. (14)

Theorem 9. Let (S(t), I(t), J(t), A(t)) be the solution of system (3) with
any initial value (S(0), I(0), J(0), A(0)) ∈ R

4
++. Let E

∗ = (S∗, I∗, J∗, A∗) be an
endemic equilibrium point of the underlying deterministic model. If R0 > 1,
and the following condition is satisfied:

2(µ + δ)− k2 > 0,

then the solution of model (3) has the property:

lim sup
t→∞

1

t
E

∫ t

0
[(S(τ)− S∗)2 + (I(τ) − I∗)2 + (J(τ)− J∗)2

+(A(τ) −A∗)2]dτ ≤
D0

θ
, (15)

where
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θ = 2min {µD1,D2, µ, 2(µ + δ)− k2} ,

and

D0 = K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3) +
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

.

Proof. We note that at the point E∗ = (S∗, I∗, J∗, A∗) we have

µK +Q1 +Q2 = µS∗ + µI∗ + (µ+ k2)J
∗

µK +Q2 = µS∗ + (µ + k1)I
∗ − αJ∗

(µ+ δ) = k2
J∗

A∗
. (16)

Consider the following function

V3(S, I, J,A) = V4 + V5 + V6 + V7

where

V4 = [(S − S∗) + (I − I∗) + (J − J∗)]2,

V5 =
(2µ+ k2)

α
[(S − S∗) + (I − I∗)]2, V6 = 2(A −A∗)2,

and

V7 = D4

(

S − S∗ − S∗ ln
S

S∗

)

+ 2D4

(

I − I∗ − I∗ ln
I

I∗

)

+A2D4

(

J − J∗ − J∗ ln
J

J∗

)

with

A2 =
2αJ∗ + cβ2J

∗S∗

k1I∗
.

Then,

∫ t

0
dV3(S, I, J,A) =

∫ t

0
LV3du+Rt

=

∫ t

0
[LV4 + LV5 + LV6 + LV7]du+Rt

where
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Rt =

∫ t

0
2[(S − S∗) + (I − I∗) + (J − J∗)](σ0SdW0(u)

+σ1IdW1(u) + σ2JdW2(u)) +

∫ t

0
2
(2µ + k2)

α
[(S − S∗)

+(I − I∗)](σ0SdW0(u) + σ1IdW1(u))

+

∫ t

0
D4(S − S∗)σ0dW0(u) +

∫ t

0
2D4(I − I∗)σ1dW1(u)

+

∫ t

0
A2D4(J − J∗)σ2dW2(u) +

∫ t

0
4(A−A∗)σ3dW3(u).

We expand the LVi terms as follows:

LV4 = 2[(S − S∗) + (I − I∗) + (J − J∗)]

×[−µ(S − S∗)− µ(I − I∗)− (µ + k2)(J − J∗)]

+(σ2
0S

2 + σ2
1I

2 + σ2
2J

2),

LV5 = 2
(2µ + k2)

α
[(S − S∗) + (I − I∗)]

×[−µ(S − S∗)− (µ+ k1)(I − I∗) + α(J − J∗)],

+
(2µ + k2)

α
(σ2

0S
2 + σ2

1I
2),

LV6 = 4(A −A∗)[k2(J − J∗)− (µ + δ)(A −A∗)] + 2σ2
3A

2,

LV7 = µS∗D4

(

2−
S

S∗
−

S∗

S

)

−D4

(

1−
S∗

S

)

×cβ1(IS − I∗S∗) + 2D4

(

2−
I

I∗
−

I∗

I

)

Q1

−D4

(

1−
S∗

S

)

cβ2(JS − J∗S∗) + 2D4cβ1(I − I∗)(S − S∗)

+2D4

(

1−
I∗

I

)

cβ2

(

JS − J∗S∗ I

I∗

)

+2D4α

(

1−
I∗

I

)(

J − J∗ I

I∗

)

+A2D4

(

1−
J∗

J

)

×

(

k1I − k1I
∗ J

J∗

)

+A2D4

(

2−
J

J∗
−

J∗

J

)

Q2
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+
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

.

Let us compute LV4,LV5 and LV6 in detail:

LV4 = −2µ(S − S∗)2 − 4µ(S − S∗)(I − I∗)− 2(2µ + k2)

×(S − S∗)(J − J∗)− 2(µ+ k2)(J − J∗)2

+(σ2
0S

2 + σ2
1I

2 + σ2
2J

2)

LV5 = −2µ
(2µ + k2)

α
(S − S∗)2 − 2

(µ + k1)(2µ + k2)

α
(I − I∗)2

−2

(

(µ+ k1)(2µ + k2)

α
+ µ

(2µ + k2)

α

)

(S − S∗)(I − I∗)

+2(2µ + k2)(S − S∗)(J − J∗) + 2(2µ + k2)(I − I∗)(J − J∗)

+
(2µ+ k2)

α
(σ2

0S
2 + σ2

1I
2)

LV6 = 4k2(A−A∗)(J − J∗)− 4(µ + δ)(A −A∗)2 + 2σ2
3A

2.

Thus we have

LV3 = −2µD1(S − S∗)2 − 2D2(I − I∗)2 − 2(µ + k2)(J − J∗)2

−2D3(S − S∗)(I − I∗) + 4k2(A−A∗)(J − J∗)

−4(µ + δ)(A −A∗)2 + σ2
0S

2D1 + σ2
1I

2D1 + σ2
2J

2

+2σ2
3A

2 + LV7, (17)

where D1,D2 and D3 are as in (14).
Applying the inequality (2), we observe that:

2(A−A∗)(J − J∗) ≤ (A−A∗)2 + (J − J∗)2.

Now from (17) we obtain the inequality:

LV3 ≤ −2µD1 (S − S∗)2 − 2D2 (I − I∗)2 − 2µ (J − J∗)2

−2(2(µ + δ)− k2) (A−A∗)2 +K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3)

−2D3(S − S∗)(I − I∗) + LV7 ≤ Λ, (18)

where

Λ = LV7 − 2D3(S − S∗)(I − I∗) +K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3).

Then
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Λ = µS∗D4

(

2−
S

S∗
−

S∗

S

)

−D4

(

1−
S∗

S

)

cβ1(IS − I∗S∗)

+2D4

(

2−
I

I∗
−

I∗

I

)

Q1 −D4

(

1−
S∗

S

)

cβ2(JS − J∗S∗)

+2D3(I − I∗)(S − S∗) + 2D4

(

1−
I∗

I

)

×cβ2

(

JS − J∗S∗ I

I∗

)

+ 2D4α

(

1−
I∗

I

)(

J − J∗ I

I∗

)

+A2D4

(

1−
J∗

J

)(

k1I − k1I
∗ J

J∗

)

+A2D4

(

2−
J

J∗
−

J∗

J

)

Q2 +
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

+K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3).

Letting S
S∗

= x, I
I∗

= y, A
A∗

= z, it follows that

Λ = S∗(D4µ+ 2D3I
∗)

(

2−
1

x
− x

)

+ 2D4αJ
∗

(

2−
z

y
−

y

z

)

+D4Scβ2J
∗

(

3−
xz

y
−

1

x
−

y

z

)

+ 2D4

(

2−
1

y
− y

)

Q1

+
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

+A2D4

(

2−
1

z
− z

)

Q2

+K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3).

Note that since the arithmetic mean is greater than or equal to the geometric
mean, it follows that

1

y
+ y ≥ 2,

1

x
+ x ≥ 2,

z

y
+

y

z
≥ 2,

1

x
+

xz

y
+

y

z
≥ 3.

We now have

Λ ≤
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

+K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3). (19)

Substituting (18) into (17), it follows that

LV3 ≤ −2µD1 (S − S∗)2 − 2D2 (I − I∗)2 − 2µ (J − J∗)2
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−2(2(µ + δ)− k2) (A−A∗)2

+K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3)

+
1

2
D4

(

S∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2

)

.

Hence

∫ t

0
dV3 ≤

∫ t

0
[−2µD1(S − S∗)2 − 2D2(I − I∗)2 − 2µ(J − J∗)2

−2(2(µ + δ)− k2)(A−A∗)2

+K2(σ2
0D1 + σ2

1D1 + σ2
2 + 2σ2

3)

+
1

2
D4(S

∗σ2
0 + 2I∗σ2

1 +A2J
∗σ2

2)]du+Rt.

We take expectation and note that E[Rt] = 0. Thus we obtain

0 ≤ E[V3(S(t), I(t), J(t), A(t))] ≤ E[V3(S(0), I(0), J(0), A(0))]

+E

∫ t

0
[−2µD1(S − S∗)2 − 2D2(I − I∗)2 − 2µ(J − J∗)2

−2(2(µ + δ) − k2)(A−A∗)2 +D0]du, (20)

which gives

E

∫ t

0

[

2µD1 (S(u)− S∗)2 + 2D2 (I(u)− I∗)2 + 2µ (J(u)− J∗)2

+2(2(µ + δ)− k2) (A(u)−A∗)2
]

du

≤ E[V3(S(0), I(0), J(0), A(0))] +D0t.

Therefore,

lim sup
t→∞

1

t
E

∫ t

0

[

2µD1 (S(u)− S∗)2 + 2D2 (I(u)− I∗)2

+2µ (J(u)− J∗)2 + 2(2(µ + δ) − k2) (A(u)−A∗)2
]

du ≤ D0.

We take θ as in the formulation of Theorem 9, and then it follows that:

lim sup
t→∞

1

t
E

∫ t

0

[

(S(τ)− S∗)2 + (I(τ) − I∗)2 + (J(τ)− J∗)2

+(A(τ)−A∗)2
]

dτ ≤
D0

θ
.
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This completes the proof. �

Remark 10. Theorem 9 states that for small values of the perturbation
parameters the solutions of the stochastic system (3) will eventually stay very
close to the endemic equilibrium of the underlying deterministic model.

We present numerical simulations in order to illustrate Theorem 9 with
parameter values given in Table 1.
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Figure 3: The dynamics of system (3) without the rates of inflow of
infectives

Chosen values: β1 = 0.0002904, β2 = 0.00061, Q1 = Q2 =
0, σ0 = 0.005, σ1 = 0.004, σ2 = 0.009, σ3 = 0.01.
Calculated value: R0 = 1.595, λ = 0.009527, S∗ = 35.04, I∗ = 6.88, J∗ =
1.92, A∗ = 0.65.

In Fig. 3 the basic reproduction number R0 is bigger than one and the
stochastic solutions remain close to the endemic solutions of the underlying
deterministic model. We observe a similar pattern in these graphs. In Fig.
4 all the parameters and their values have remained unchanged, except that
the rates of inflow of infectives Q1, Q2 now are taken as positive. In the case
of the underlying deterministic model, the rates of inflow of infectives lead to
increasing the values of the force of infection λ, I, J and A while decreasing the
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Figure 4: The dynamics of system (3) with the rates of inflow of
infectives

Chosen values: β1 = 0.0002904, β2 = 0.00061, Q1 = Q2 =
0.005, σ0 = 0.005, σ1 = 0.004, σ2 = 0.009, σ3 = 0.01.
Calculated value: R0 = 1.595, λ = 0.01022, S∗ = 34.12, I∗ = 7.37, J∗ =
2.077, A∗ = 0.70.

value of S. In the stochastic case, the fluctuation in each graph is higher than
the fluctuations in Fig. 4 due to the rates of inflow of infectives. In some simu-
lations not shown here, it is found that a strong perturbation leads to a strong
divergence. In this case, we would not expect to see the stochastic solutions be
close to the endemic solutions of the underlying deterministic system.

6. Concluding remarks

We have presented an sde model of HIV, which we showed to have well-behaved
solutions. In the special case that we have no inflow of infected individuals into
the system and σ0 = 0, Theorem 7 describes convergence to disease-free equilib-
rium. In particular, the theorem asserts that for sufficiently small values of the
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perturbation parameter, stability of the disease-free equilibrium is obtained for
a bigger range of values of the basic reproduction number R0 of the determin-
istic model, i.e., beyond the range R0 < 1. This is sufficiently significant that
it can be observed in simulations. The almost sure exponential stability is a
fairly strong type of stability, it being a stochastic version of global asymptotic
stability. For the public health authorities it is comforting to know that the
presence of minor stochasticity on their model will not be a hindrance if erad-
ication strategies should be launched. With respect to the general model, we
have been able to describe the long-term behaviour of solutions in comparison
with that of the deterministic model, in Theorem 9. The theorem asserts that
asymptotically the stochastic solutions stay within a certain bound from the
(non-trivial) equilibrium point of the underlying deterministic model. This is
very well observed in simulations. Further it is also investigated that the posi-
tive flow of infectives could affect the stability and also lead the dynamics of the
model system from stable to the unstable situation. Our sde model has revealed
some new phenomena and is useful when planning intervention strategies.
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